Skip to content

RoboCubPilot/g1_deploy_mujoco

Repository files navigation

G1 Deploy Mujoco

IsaacLab this project Mujoco
G1机器人演示 G1机器人演示

✨ 概览

This repository provides a lightweight deployment of Unitree_RL_Lab training results in Python with Mujoco, without requiring IsaacSim, Unitree_RL_Lab, or IsaacLab installations.

It includes scripts to batch convert training checkpoints into JIT / ONNX models, enabling you to train on a server and easily visualize results locally in Mujoco.

A sample G1 29-DoF walking policy (checkpoint/policy.pt) is provided for testing, and you can replace it with your own trained policies.

  • 本仓库无需依赖 IsaaSim, Unitree_RL_LabIsaacLab 的安装
  • Unitree_RL_Lab 的训练结果,提供 Mujoco Python 版本的轻量化部署
  • Unitree_RL_Lab 的训练结果,提供批量转换为 JIT / ONNX 模型的脚本
  • 应用场景是,在服务器上得到结果训练,拉到在本地,即可直接通过 Mujoco 查看训练结果
  • 提供了基础的 G1 29 自由度行走策略(checkpoint/policy.pt)供你尝试,你也可以将其替换为自己训练的策略

🛠️ 步骤(中文版)

  1. 参考 unitree_rl_lab ,训练出 29-DoF Unitree G1 行走策略并导出exported/policy.pt

  2. 克隆本仓库:

    git clone https://github.com/RoboCubPilot/g1_deploy_mujoco.git
  3. 安装必要环境(如果已安装 Isaac Lab 环境可跳过):

    conda env create -f environment.yml
    conda activate g1_deploy
  4. 在 Mujoco 模拟器中运行 Sim2Sim,默认策略路径为 checkpoint/policy.pt

    python deploy_mujoco.py --policy YOUR_POLICY_PATH
  5. (可选)如需将 JIT 格式策略转换为 ONNX 格式:

    python scripts/convert_jit_to_onnx.py --jit-path YOUR_POLICY_PATH --onnx-path OUTPUT_ONNX_PATH
  6. (可选)该脚本用于 将 RSL-RL 的训练 checkpoint 批量转换为可部署的 JIT / ONNX 模型,无需安装 IsaacSim 或 IsaacLab。

    python scripts/batch_processing.py --input_path ORIGINAL_CHECKPOINT_PATH --output_path EXPORTED_PATH
    • RIGINAL_CHECKPOINT_PATH: 原始 checkpoint 的路径,可以是单个文件(如 logs/2025-**/model_**.pt)、目录(如 logs/2025-**),或通配符模式.
    • EXPORTED_PATH: 导出模型保存路径(默认:./exported/),也可以指定为任意自定义目录.

🛠️ Steps (in English)

  1. Train a policy
    Train the 29-DoF Unitree G1 locomotion policy in unitree_rl_lab and export exported/policy.pt

  2. Clone this repository

    git clone https://github.com/RoboCubPilot/g1_deploy_mujoco.git
  3. Install environment (skip if Isaac Lab is already installed)

    conda env create -f environment.yml
    conda activate g1_deploy
  4. Run deployment
    Launch Sim2Sim in Mujoco with the default policy path checkpoint/policy.pt:

    python deploy_mujoco.py --policy YOUR_POLICY_PATH
  5. (Optional) Convert JIT → ONNX

    python scripts/convert_jit_to_onnx.py --jit-path YOUR_POLICY_PATH --onnx-path EXPORTED_PATH
  6. (Optional) This script batch converts RSL-RL checkpoints into deployable JIT/ONNX models, without requiring Isaac Sim or Isaac Lab.

    python scripts/batch_processing.py --input_path ORIGINAL_CHECKPOINT_PATH --output_path EXPORTED_PATH
    • RIGINAL_CHECKPOINT_PATH: should point to the original checkpoint(s), e.g. a file (logs/2025-**/model_**.pt), directory(logs/2025-**), or wildcard pattern.
    • EXPORTED_PATH: specifies where the exported models will be saved (default: ./exported/). You can override it to any custom folder.

🎉 Features

  • 🏃‍♂️ Deploy RL policies to Mujoco in seconds
  • 🔄 JIT → ONNX conversion supported
  • 🔌 Seamless integration with Unitree RL Lab

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages