Skip to content

TSCCompiler/tvm-vta-llm

 
 

Repository files navigation

VTA-LLM Hardware Design Stack

Build Status

VTA-LLM

还在开发中。。。。。。

希望增加softmax等新的op,让tvm-vta支持transformer模型的推理,现在通过增加了一个reduce的计算引擎,实现了softmax算子。 相关代码在vta/python/vta_softmax.py里面。目前仅把新的算子增加到vta_fsim的 软件仿真模块里,并通过了测试。 下一步将会把相关算法添加到chisel的rtl里面,或者增加到hls里面。下一步还想通过blackbox的方式,把hls生成的 verilog加入到chisel的rtl里面,并通过verilator进行仿真,最后实现在xilinx fpga上的部署。

VTA(versatile tensor accelerator) is an open-source deep learning accelerator complemented with an end-to-end TVM-based compiler stack.

The key features of VTA include:

  • Generic, modular, open-source hardware
    • Streamlined workflow to deploy to FPGAs.
    • Simulator support to prototype compilation passes on regular workstations.
  • Driver and JIT runtime for both simulator and FPGA hardware back-end.
  • End-to-end TVM stack integration
    • Direct optimization and deployment of models from deep learning frameworks via TVM.
    • Customized and extensible TVM compiler back-end.
    • Flexible RPC support to ease deployment, and program FPGAs with the convenience of Python.
  • Running on xilinx pynq
    su root
    source /home/xilinx/.bashrc
    python3 -m vta.exec.rpc_server --host 192.168.6.200 --port 9091 

About

Trying to add transformer support to tvm vta (Open, Modular, Deep Learning Accelerator)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Verilog 42.6%
  • Python 19.8%
  • Scala 15.2%
  • C++ 10.8%
  • Tcl 5.9%
  • C 2.5%
  • Other 3.2%