Skip to content

UBCDingXin/LDCSR

 
 

Repository files navigation

Latent Diffusion for Continuous-Scale Super-Resolution of Remote-Sensing Images

Hanlin Wu  Jiangwei Mo  Xiaohui Sun  Jie Ma
Beijing Foreign Studies University

Paper | PDF


Overview

overview

Dependencies and Installation

  1. Clone repo
git clone https://github.com/MoooJianG/LDCSR.git
  1. Install dependencies
conda create -n LDCSR python=3.10
conda activate LDCSR
pip install -r requirements.txt

Usage

Dataset Preparation

We support AID, DOTA, and DIOR out‑of‑the‑box. Download HR images using the official links below (or your own data) and generate LR/HR pairs via bicubic down‑sampling.

Data Type AID DOTA DIOR
HR HR None None
LR LR LR LR
# Example: split AID
python data/prepare_split.py --split_file AID_split.pkl --data_path dataset/RawAID --output_path dataset/AID

Custom datasets should replicate the following folder structure:

└── dataset
    └── YourData
        ├── Train
        |   ├── HR
        |   └── LR
        ├── Test
        └── Val

Quick Start

Model Training in AID

# First-stage
python train.py --config configs/first_stage_kl_v6.yaml
# Second-stage
python train.py --config configs/second_stage_van_v4.yaml

Model Testing

python test.py --checkpoint path/to/checkpoint.ckpt --datasets AID --scales 4

Contact

If you have any questions or suggestions, feel free to contact me.

Email:20220119004@bfsu.edu.cn

Citation

@ARTICLE{11006698,
  author={Wu, Hanlin and Mo, Jiangwei and Sun, Xiaohui and Ma, Jie},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images}, 
  year={2025},
  volume={},
  number={},
  pages={1-1},
  keywords={Diffusion models;Training;Image synthesis;Noise reduction;Visualization;Decoding;Computational modeling;Remote sensing;Image reconstruction;Autoencoders;Remote sensing;super-resolution;latent diffusion;continuous-scale},
  doi={10.1109/TGRS.2025.3571290}}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 64.3%
  • Jupyter Notebook 35.7%