Skip to content

YuanJiayuuu/SWA-PF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SWA-PF: Semantic-Weighted Adaptive Particle Filter for Memory-Efficient 4-DoF UAV Localization in GNSS-Denied Environments

We shared our results here

About Dataset

MAFS

├── MAFS/
│   ├──ligong/
│       ├── 200m
│           ├── map
│               ├── detail.txt				/* details about the satellite image
│               ├── img.png					/* satellite image
│               ├── label.png				/* Semantic satellite map
│           ├── route
│               ├── gps.txt					/* format as: path latitude longitude height
│               ├── ligong_200m_1_000000.png	/* UAV images
│               ├── ligong_200m_1_000050.png
│               ...
│   ├──hangdian/
│       ├── 150m
│           ├── map
│           ├── route
│               ├── gps.txt
│               ├── ligong_200m_1_000000.png
│               ├── ligong_200m_1_000050.png
│               ...
│       ├── 200m
│   ...

Prerequisites

  • Python 3.9+
  • GPU Memory >= 8G
  • Numpy = 1.26
  • Pytorch 1.10.0+cu113
  • Torchvision 0.11.1+cu113

Installation

It is best to use cuda version 11.3 and pytorch version 1.10.0.

You can execute the following command to install all dependencies.

conda create -n SWAPF python=3.9
pip install "torch-1.10.0+cu113-cp39-cp39-win_amd64.whl"
pip install "torchvision-0.11.1+cu113-cp39-cp39-win_amd64.whl"
# pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python
pip install pandas
pip install scikit-learn
pip install matplotlib
pip install timm
pip install einops
pip uninstall numpy
pip install numpy==1.26

Dataset & Preparation

Currently, we have created the following path and open sourced a portion of it.

You can download the MAFS datasets from this website passpassword: 8888

Name Height
caijing 100m, 120m
chuanmei 100m, 300m, 500m, 100m-500m
gongshang 100m, 120m
hangdian 100m, 300m, 500m, 100m-500m
hangzhi 100m, 200m, 300m, 400m, 500m, 100m-500m
jiliang 100m, 200m
jingguan 100m, 120m
jingji 100m, 120m
jingmao 100m, 120m
jinrong 100m, 120m
ligong 100m, 200m, 300m, 400m, 500m, 100m-500m
shifan 100m, 120m
shuiyuan 100m, 200m
xianke 100m, 120m
dianli 100m, 200m, 300m, 400m, 500m, 100m-500m

Start

You can easily run it by python SWAPF.py

The premise is that you need to modify the dataset path within datasets/data_process.py

Citation

The following paper uses and reports the result of the baseline model. You may cite it in your paper.

@inproceedings{Yuan2025SWAPFSA,
  title={SWA-PF: Semantic-Weighted Adaptive Particle Filter for Memory-Efficient 4-DoF UAV Localization in GNSS-Denied Environments},
  author={Jiayu Yuan and Ming Dai and Enhui Zheng and Chao Su and Nanxing Chen and Qiming Hu and Shibo Zhu and Yibin Cao},
  year={2025},
  url={https://api.semanticscholar.org/CorpusID:281332613}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages