此项目为docomo在线学习2022年进展
bash train_T5_zero.sh
自行修改shell文件参数
CUDA_VISIBLE_DEVICES=1 python run_seq2seq.py \
--model_name_or_path t5_model/t5-base \
--model_name t5-base \
--do_train \
--do_eval \
--train_file data/docomo_data/train.json \
--validation_file data/docomo_data/dev.json \
--source_prefix "summarize: " \
--output_dir /checkpoint/docomo \
--overwrite_output_dir \
--per_device_train_batch_size=8 \
--per_device_eval_batch_size=8 \
--predict_with_generate \
--eval_steps=50 \
--logging_steps=50 \
--num_train_epochs=3.0 \
--learning_rate=1e-4 \
--num_beams=1 \
--evaluation_strategy epoch \
--save_strategy epoch \
--load_best_model_at_end True \bash test_T5_zero.sh
自行修改shell文件参数
CUDA_VISIBLE_DEVICES=1 python run_seq2seq.py \
--model_name_or_path /checkpoint/docomo \
--model_name t5-base \
--do_eval \
--train_file data/docomo_data/train.json \
--validation_file data/docomo_data/test.json \
--source_prefix "summarize: " \
--output_dir /checkpoint/docomo \
--overwrite_output_dir \
--per_device_train_batch_size=10 \
--per_device_eval_batch_size=10 \
--predict_with_generate \
--eval_steps=50 \
--logging_steps=50 \
--num_train_epochs=10.0 \
--learning_rate=5e-2 \
--evaluation_strategy epoch \
--save_strategy epoch \
--load_best_model_at_end True \
--num_beams=5 \