-
09:04
(UTC -12:00) - https://hekai.blog.csdn.net/?type=blog
Stars
Contains the public resources of Hands on GenAI book
🪐 🤖 AI Agents for JupyterLab with 🔧 MCP tools - Chat interface for optimized notebook interaction and code execution.
刷算法全靠套路,认准 labuladong 就够了!English version supported! Crack LeetCode, not only how, but also why.
lucknutlealucky / scat_colab
Forked from fgsect/scatConverting QMDL2 to PCAP
Tigramite is a python package for causal inference with a focus on time series data. The Tigramite documentation is at
Langchain-Chatchat(原Langchain-ChatGLM)基于 Langchain 与 ChatGLM, Qwen 与 Llama 等语言模型的 RAG 与 Agent 应用 | Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM, Qwen and…
A playbook for systematically maximizing the performance of deep learning models.
中英文敏感词、语言检测、中外手机/电话归属地/运营商查询、名字推断性别、手机号抽取、身份证抽取、邮箱抽取、中日文人名库、中文缩写库、拆字词典、词汇情感值、停用词、反动词表、暴恐词表、繁简体转换、英文模拟中文发音、汪峰歌词生成器、职业名称词库、同义词库、反义词库、否定词库、汽车品牌词库、汽车零件词库、连续英文切割、各种中文词向量、公司名字大全、古诗词库、IT词库、财经词库、成语词库、地名词库、…
Awesome Easy-to-Use Deep Time Series Modeling based on PaddlePaddle, including comprehensive functionality modules like TSDataset, Analysis, Transform, Models, AutoTS, and Ensemble, etc., supportin…
[Unofficial] PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)
pengchengguo / espnet
Forked from espnet/espnetEnd-to-End Speech Processing Toolkit
An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.
The GitHub repository for the paper "Informer" accepted by AAAI 2021.
X-CCS / FastSpeech2
Forked from ming024/FastSpeech2An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"
Gated Channel Transformation for Visual Recognition (CVPR 2020)
run this repository only depend python2.7 and Pytorch (0.3 or 0.4)
Liver and liver tumors segmentation using deep learning
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.06
A paper list of object detection using deep learning.
Example TensorFlow codes and Caicloud TensorFlow as a Service dev environment.
Python - 100天从新手到大师
📈📊🚀🚀🚀An elegant modern declarative data visualization chart framework for iOS, iPadOS and macOS. Extremely powerful, supports line, spline, area, areaspline, column, bar, pie, scatter, angular gaug…