Skip to content

avinashyadav16/PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

22 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PyTorch Logo

🎯 Complete PyTorch Framework: Theory, Implementation, and Real-World Applications 🎯

PyTorch Python Jupyter NumPy Pandas Matplotlib Scikit-learn Modules Status Contributions

🌟 Star this repository if you find it helpful!

πŸ“‹ Table of Content

🎯 Overview

This repository is a complete PyTorch learning destination. It contains 14 detailed modules with hands-on Jupyter notebooks, practical implementations, and real-world projects covering the entire PyTorch ecosystem.

From fundamental tensor operations to building complex neural networks for computer vision, natural language processing, and sequential data modeling, this repository provides a structured learning path with theory, code, and practical applications.

πŸš€ Quick Start

# Clone the repository
git clone https://github.com/avinashyadav16/PyTorch.git
cd PyTorch


# Set up environment
python -m venv .venv
# Activate (Windows)
.venv\Scripts\activate
# Activate (Mac/Linux)
source .venv/bin/activate


# Install essential dependencies
pip install -r requirements.txt

# Start learning!

πŸ“ Directory Structure

PyTorch
β”œβ”€β”€ πŸ“‚ 01 Introduction to PyTorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 1.0 INTRODUCTION TO PyTorch.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 1.1 CORE FEATURES.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 1.2 PyTorch VS TensorFlow.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 1.3 PyTorch CORE MODULES.pdf
│    └── πŸ“„ 1.4 WHO USES PyTorch.pdf
β”‚
β”œβ”€β”€ πŸ“‚ 02 Tensors in PyTorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 2.0 TENSORS IN PyTorch.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 2.1 WHY ARE TENSORS USEFUL.pdf
│    └── πŸ““ Tensors_In_PyTorch.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 03 PyTorch autograd
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 3.0 OVERVIEW PyTorch autograd.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 3.1 WHAT IS autograd.pdf
│    └── πŸ““ PyTorch_autograd.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 04 PyTorch Training Pipeline
│    └── πŸ““ pytorch_training_pipeline.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 05 PyTorch NN Module
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 5.0 PyTorch nn.Module.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 5.1 The torch.optim module.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ 01 pytorch_nn_module.ipynb
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ 02 pytorch_training_pipeline_using_nn_module.ipynb
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ pytorch_nn_module.ipynb
│    └── πŸ““ pytorch_training_pipeline_using_nn_module.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 06 Dataset & DataLoader Class in PyTorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.0 NEED OF Dataset & DataLoader CLASS.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.1 Dataset & DataLoader CLASS IN PyTorch.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.2 NOTE ABOUT DATA TRANSFORMATIONS.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.3 NOTE ABOUT PARALLELIZATION.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.4 NOTE ABOUT Samplers.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.5 NOTE ABOUT collate_fn.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 6.6 DataLoader IMPORTANT PARAMETERS.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ dataset_and_dataloader.ipynb
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ pytorch_training_pipeline_using_dataset_and_dataloader.ipynb
│    └── πŸ““ Simple_dataset_and_dataloader.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 07 Building a ANN using PyTorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 7.0 BUILDING A ANN/MLP USING PyTorch.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ ann_fashion_mnist_pytorch.ipynb
│    └── πŸ“Š fmnist_small.csv
β”‚
β”œβ”€β”€ πŸ“‚ 08 Neural Network Training on GPU
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ 01_Steps_For_Training_A_Model_On_GPU.ipynb
│    └── πŸ““ 02_Training_ANN_On_GPU.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 09 Optimizing The Neural Network
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 9.0 OPTIMIZING THE NEURAL NETWORK.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 9.1 SOLUTION - DROPOUTS.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 9.2 SOLUTION - BATCH NORMALIZATION.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 9.3 SOLUTION - REGULARIZATION.pdf
│    └── πŸ““ GPU_Optimised_ANN.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 10 Hyperparameter Tuning of ANN Using Optuna
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 10.0 BAYESIAN HYPERPARAMETER TUNING METHOD USING Optuna - [ EXTRA ].pdf
│    └── πŸ““ 10.1 BAYESIAN HYPERPARAMETER TUNING METHOD USING Optuna - [ EXTRA ].ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 11 Building CNN Using PyTorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 11.0 BUILDING A CNN USING PyTorch.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ Building_CNN_Using_PyTorch.ipynb
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ Hyperparameter_Tuning_Of_A_CNN_Using_Optuna.ipynb
│    └── πŸ“Š fashion-mnist_train.csv
β”‚
β”œβ”€β”€ πŸ“‚ 12 Transfer Learning Using PyTorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 12.0 TRANSFER LEARNING USING PyTorch.pdf
│    └── πŸ““ Transfer_Learning_using_PyTorch.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ 13 RNN Using PyTorch And Question Answering System
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 13.0 RNN USING PyTorch & RNN BASED QUESTION ANSWERING SYSTEM.pdf
β”‚Β Β Β Β β”œβ”€β”€ πŸ““ RNN_BASED_QUESTION_ANSWERING_SYSTEM_USING_PYTORCH.ipynb
│    └── πŸ“Š 100_Unique_QA_Dataset.csv
β”‚
β”œβ”€β”€ πŸ“‚ 14 LSTM And Next Word Predictor Using Pytorch
β”‚Β Β Β Β β”œβ”€β”€ πŸ“„ 14.0 NEXT WORD PREDICTOR USING PyTorch & LSTM USING PyTorch.pdf
│    └── πŸ““ PyTorch_LSTM_Next_Word_Prediction_Model.ipynb
β”‚
β”œβ”€β”€ πŸ“‚ DATASETS
β”‚Β Β Β Β β”œβ”€β”€ πŸ“Š 100_Unique_QA_Dataset.csv
β”‚Β Β Β Β β”œβ”€β”€ πŸ“Š fmnist_small.csv
│    └── πŸ“„ Dataset.md
β”‚
β”œβ”€β”€ πŸ“„ LICENSE
β”œβ”€β”€ πŸ“„ README.md
└── πŸ“„ requirements.txt

πŸ™ Acknowledgments


⭐ Star this repository if you find it helpful!

Made with ❀️ by Avinash Yadav

About

Complete PyTorch Framework: Theory, Implementation, and Real-World Applications

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published