This repository is a complete PyTorch learning destination. It contains 14 detailed modules with hands-on Jupyter notebooks, practical implementations, and real-world projects covering the entire PyTorch ecosystem.
From fundamental tensor operations to building complex neural networks for computer vision, natural language processing, and sequential data modeling, this repository provides a structured learning path with theory, code, and practical applications.
# Clone the repository
git clone https://github.com/avinashyadav16/PyTorch.git
cd PyTorch
# Set up environment
python -m venv .venv
# Activate (Windows)
.venv\Scripts\activate
# Activate (Mac/Linux)
source .venv/bin/activate
# Install essential dependencies
pip install -r requirements.txt
# Start learning!PyTorch
βββ π 01 Introduction to PyTorch
βΒ Β Β Β βββ π 1.0 INTRODUCTION TO PyTorch.pdf
βΒ Β Β Β βββ π 1.1 CORE FEATURES.pdf
βΒ Β Β Β βββ π 1.2 PyTorch VS TensorFlow.pdf
βΒ Β Β Β βββ π 1.3 PyTorch CORE MODULES.pdf
βΒ Β Β Β βββ π 1.4 WHO USES PyTorch.pdf
β
βββ π 02 Tensors in PyTorch
βΒ Β Β Β βββ π 2.0 TENSORS IN PyTorch.pdf
βΒ Β Β Β βββ π 2.1 WHY ARE TENSORS USEFUL.pdf
βΒ Β Β Β βββ π Tensors_In_PyTorch.ipynb
β
βββ π 03 PyTorch autograd
βΒ Β Β Β βββ π 3.0 OVERVIEW PyTorch autograd.pdf
βΒ Β Β Β βββ π 3.1 WHAT IS autograd.pdf
βΒ Β Β Β βββ π PyTorch_autograd.ipynb
β
βββ π 04 PyTorch Training Pipeline
βΒ Β Β Β βββ π pytorch_training_pipeline.ipynb
β
βββ π 05 PyTorch NN Module
βΒ Β Β Β βββ π 5.0 PyTorch nn.Module.pdf
βΒ Β Β Β βββ π 5.1 The torch.optim module.pdf
βΒ Β Β Β βββ π 01 pytorch_nn_module.ipynb
βΒ Β Β Β βββ π 02 pytorch_training_pipeline_using_nn_module.ipynb
βΒ Β Β Β βββ π pytorch_nn_module.ipynb
βΒ Β Β Β βββ π pytorch_training_pipeline_using_nn_module.ipynb
β
βββ π 06 Dataset & DataLoader Class in PyTorch
βΒ Β Β Β βββ π 6.0 NEED OF Dataset & DataLoader CLASS.pdf
βΒ Β Β Β βββ π 6.1 Dataset & DataLoader CLASS IN PyTorch.pdf
βΒ Β Β Β βββ π 6.2 NOTE ABOUT DATA TRANSFORMATIONS.pdf
βΒ Β Β Β βββ π 6.3 NOTE ABOUT PARALLELIZATION.pdf
βΒ Β Β Β βββ π 6.4 NOTE ABOUT Samplers.pdf
βΒ Β Β Β βββ π 6.5 NOTE ABOUT collate_fn.pdf
βΒ Β Β Β βββ π 6.6 DataLoader IMPORTANT PARAMETERS.pdf
βΒ Β Β Β βββ π dataset_and_dataloader.ipynb
βΒ Β Β Β βββ π pytorch_training_pipeline_using_dataset_and_dataloader.ipynb
βΒ Β Β Β βββ π Simple_dataset_and_dataloader.ipynb
β
βββ π 07 Building a ANN using PyTorch
βΒ Β Β Β βββ π 7.0 BUILDING A ANN/MLP USING PyTorch.pdf
βΒ Β Β Β βββ π ann_fashion_mnist_pytorch.ipynb
βΒ Β Β Β βββ π fmnist_small.csv
β
βββ π 08 Neural Network Training on GPU
βΒ Β Β Β βββ π 01_Steps_For_Training_A_Model_On_GPU.ipynb
βΒ Β Β Β βββ π 02_Training_ANN_On_GPU.ipynb
β
βββ π 09 Optimizing The Neural Network
βΒ Β Β Β βββ π 9.0 OPTIMIZING THE NEURAL NETWORK.pdf
βΒ Β Β Β βββ π 9.1 SOLUTION - DROPOUTS.pdf
βΒ Β Β Β βββ π 9.2 SOLUTION - BATCH NORMALIZATION.pdf
βΒ Β Β Β βββ π 9.3 SOLUTION - REGULARIZATION.pdf
βΒ Β Β Β βββ π GPU_Optimised_ANN.ipynb
β
βββ π 10 Hyperparameter Tuning of ANN Using Optuna
βΒ Β Β Β βββ π 10.0 BAYESIAN HYPERPARAMETER TUNING METHOD USING Optuna - [ EXTRA ].pdf
βΒ Β Β Β βββ π 10.1 BAYESIAN HYPERPARAMETER TUNING METHOD USING Optuna - [ EXTRA ].ipynb
β
βββ π 11 Building CNN Using PyTorch
βΒ Β Β Β βββ π 11.0 BUILDING A CNN USING PyTorch.pdf
βΒ Β Β Β βββ π Building_CNN_Using_PyTorch.ipynb
βΒ Β Β Β βββ π Hyperparameter_Tuning_Of_A_CNN_Using_Optuna.ipynb
βΒ Β Β Β βββ π fashion-mnist_train.csv
β
βββ π 12 Transfer Learning Using PyTorch
βΒ Β Β Β βββ π 12.0 TRANSFER LEARNING USING PyTorch.pdf
βΒ Β Β Β βββ π Transfer_Learning_using_PyTorch.ipynb
β
βββ π 13 RNN Using PyTorch And Question Answering System
βΒ Β Β Β βββ π 13.0 RNN USING PyTorch & RNN BASED QUESTION ANSWERING SYSTEM.pdf
βΒ Β Β Β βββ π RNN_BASED_QUESTION_ANSWERING_SYSTEM_USING_PYTORCH.ipynb
βΒ Β Β Β βββ π 100_Unique_QA_Dataset.csv
β
βββ π 14 LSTM And Next Word Predictor Using Pytorch
βΒ Β Β Β βββ π 14.0 NEXT WORD PREDICTOR USING PyTorch & LSTM USING PyTorch.pdf
βΒ Β Β Β βββ π PyTorch_LSTM_Next_Word_Prediction_Model.ipynb
β
βββ π DATASETS
βΒ Β Β Β βββ π 100_Unique_QA_Dataset.csv
βΒ Β Β Β βββ π fmnist_small.csv
βΒ Β Β Β βββ π Dataset.md
β
βββ π LICENSE
βββ π README.md
βββ π requirements.txt
- Practical Deep Learning using PyTorch By CampusX for the whole learning.
- PyTorch Team for the amazing framework
- Fashion-MNIST for the benchmark dataset
- Optuna for hyperparameter optimization tools
β Star this repository if you find it helpful!
Made with β€οΈ by Avinash Yadav