This is the official repository of DIVER.
-
DIVER Concept. We propose the DIVER, an novel multi-mode E2E-AD framework that uses reinforcement learning to guide diffusion models in generating diverse and feasible driving behaviors.
-
Diffusion Model. We introduce the Policy-Aware Diffusion Generator (PADG), which incorporates map elements and agent interactions as conditional inputs, enabling the generation of multi-mode trajectory that capture diverse driving styles.
-
Reinforcement Learning. We leverage reinforcement learning to guide the diffusion model with diversity and safety rewards, addressing the limitations of imitation learning.
-
Diversity Metric. We propose a novel Diversity Metric to evaluate multi-mode trajectory generation, providing a more principled way to assess the diversity and effectiveness of generated trajectories compared to existing metrics.
-
Performance Evaluation. Extensive evaluations on the Bench2Drive, NAVSIM, NuScenes demonstrate that DIVER significantly improves the diversity, safety, and feasibility of generated trajectories over state-of-the-art methods.
- Planning results on nuScenes.
| Method | L2 (m) 1s | L2 (m) 2s | L2 (m) 3s | L2 (m) Avg | Col. (%) 1s | Col. (%) 2s | Col. (%) 3s | Col. (%) Avg |
|---|---|---|---|---|---|---|---|---|
| UniAD | 0.07 | 0.14 | 0.24 | 0.15 | 0.03 | 0.05 | 0.16 | 0.08 |
| SparseDrive | 0.05 | 0.11 | 0.23 | 0.13 | 0.01 | 0.05 | 0.18 | 0.08 |
| DIVER (Ours) | 0.10 | 0.19 | 0.34 | 0.21 | 0.01 | 0.05 | 0.15 | 0.07 |
- Planning results on the Turning-nuScenes validation dataset Turning-nuScenes .
| Method | L2 (m) 1s | L2 (m) 2s | L2 (m) 3s | Col. (%) 1s | Col. (%) 2s | Col. (%) 3s |
|---|---|---|---|---|---|---|
| SparseDrive | 0.09 | 0.18 | 0.36 | 0.04 | 0.17 | 0.98 |
| DiffusionDrive | 0.11 | 0.21 | 0.37 | 0.03 | 0.14 | 0.85 |
| MomAD | 0.09 | 0.17 | 0.34 | 0.03 | 0.13 | 0.79 |
| DIVER (Ours) | 0.17 | 0.29 | 0.47 | 0.03 | 0.11 | 0.67 |
- Planning results on the Bench2Drive dataset Bench2Drive.
| Method | Traj. | Scheme | Venue | Avg. L2 ↓ | Div.(t) ↑ | DS ↑ | SR (%) ↑ | Effi ↑ | Comf ↑ | Merg. | Overta. | Emerge. | Give Way | Traffic Sign | Mean |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| VAD | ST | IL | ICCV 2023 | 0.91 | - | 42.35 | 15.00 | 157.94 | 46.01 | 8.11 | 24.44 | 18.64 | 20.00 | 19.15 | 18.07 |
| GenAD | ST | IL | ECCV 2024 | - | - | 44.81 | 15.90 | - | - | - | - | - | - | - | - |
| MomAD(VAD) | MT | IL | CVPR 2025 | 0.87 | 0.18 | 45.35 | 17.44 | 162.09 | 49.34 | 9.99 | 26.31 | 20.07 | 20.00 | 20.23 | 19.32 |
| MomAD(SD) | MT | IL | CVPR 2025 | 0.82 | 0.20 | 47.91 | 18.11 | 174.91 | 51.20 | 13.21 | 21.02 | 18.01 | 20.00 | 21.07 | 18.66 |
| VADmmt† | MT | IL | ICCV 2023 | 0.89 | 0.20 | 42.87 | 15.91 | 158.12 | 47.22 | 9.43 | 25.31 | 19.91 | 20.00 | 20.09 | 18.95 |
| DIVER (Ours) | MT | IL & RL | – | 1.13 | 0.32 | 47.95 | 19.47 | 164.66 | 51.28 | 13.83 | 29.09 | 25.51 | 20.00 | 24.93 | 22.67 |
| SparseDrive† | MT | IL | ICRA 2025 | 0.87 | 0.21 | 44.54 | 16.71 | 170.21 | 48.63 | 12.18 | 23.19 | 17.91 | 20.00 | 20.98 | 17.45 |
| DIVER (Ours) | MT | IL & RL | – | 1.05 | 0.35 | 49.21 | 21.56 | 177.00 | 54.72 | 15.98 | 28.22 | 23.71 | 20.00 | 24.38 | 22.46 |
If you find DIVER is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.
@article{song2025breaking,
title={Breaking imitation bottlenecks: Reinforced diffusion powers diverse trajectory generation},
author={Song, Ziying and Liu, Lin and Pan, Hongyu and Liao, Bencheng and Guo, Mingzhe and Yang, Lei and Zhang, Yongchang and Xu, Shaoqing and Jia, Caiyan and Luo, Yadan},
journal={arXiv preprint arXiv:2507.04049},
year={2025}
}