Skip to content

afondiel/edge-language

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Edge Language πŸ’¬ | A Practical Guide

A practical guide for real-world language-based AI applications for resource-constrained devices with industry standards in mind.

New to Edge AI?

Table of Contents

Introduction

The goal of this guide is to provide resources for building, optimizing, and deploying language-based AI applications at the edge, through hands-on examples including practical notebooks and real-world use cases across key industries.

Key Concepts

Industry Blueprints

  • Autonomous Systems
  • Healthcare & Medical Imaging*
  • Retail & Consumer Analytics
  • Security & Surveillance
  • Agriculture & Precision Farming
  • Manufacturing & Quality Control
  • Smart Cities & Urban Planning

Edge Optimization Lab: techniques and tools for maximizing performance and efficiency of language models on edge hardware

  • Model Quantization
  • Pruning Techniques
  • Federated Learning
  • Compiler Targets (ONNX, TVM)
  • Hardware-Specific Optimizations (Jetson, Raspberry Pi, Microcontrollers)

Production Pipelines: guides and templates for robust, scalable edge language AI operations

  • CI/CD for Language Models on the Edge
  • Monitoring (Drift Detection, Edge Metrics Dashboard)
  • OTA Updates
  • Edge Security (Secure Boot, Data Encryption, Threat Detection, Privacy-Preserving language, Adversarial Robustness, Device Hardening, Compliance)

Reference Architectures: blueprints for edge language hardware and system design

  • Microphone Array Setups
  • Edge Server Specs
  • IoT Connectivity
  • Edge-Cloud Hybrid Models

Integration

  • Notebooks (hands-on deep dives)
  • Companion Resources
  • Industry-Specific Stardards

Project Structure

β”œβ”€β”€ edge-ai-engineering/
β”‚   β”œβ”€β”€ introduction-to-edge-ai.md
β”‚   β”œβ”€β”€ edge-ai-architectures.md
β”‚   β”œβ”€β”€ model-optimization-techniques.md
β”‚   β”œβ”€β”€ hardware-acceleration.md
β”‚   β”œβ”€β”€ edge-deployment-strategies.md
β”‚   β”œβ”€β”€ real-time-processing.md
β”‚   β”œβ”€β”€ privacy-and-security.md
β”‚   β”œβ”€β”€ edge-ai-frameworks.md
β”‚   └── benchmarking-and-performance.md    
β”œβ”€β”€ industry-blueprints/
β”‚   β”œβ”€β”€ autonomous-systems/
β”‚   β”‚   β”œβ”€β”€ voice-command-recognition-tflite.md
β”‚   β”‚   β”œβ”€β”€ natural-language-vehicle-control.md
β”‚   β”‚   └── edge-language-agents-drone.md
β”‚   β”œβ”€β”€ healthcare/
β”‚   β”‚   β”œβ”€β”€ clinical-text-analysis-edge.md
β”‚   β”‚   β”œβ”€β”€ patient-conversation-models.md
β”‚   β”‚   └── medical-language-agents.md
β”‚   β”œβ”€β”€ retail-consumer-analytics/
β”‚   β”‚   β”œβ”€β”€ sentiment-analysis-edge.md
β”‚   β”‚   β”œβ”€β”€ chatbot-instore-assistance.md
β”‚   β”‚   └── personalized-recommendation-edge.md
β”‚   β”œβ”€β”€ security-surveillance/
β”‚   β”‚   β”œβ”€β”€ voice-biometric-authentication.md
β”‚   β”‚   β”œβ”€β”€ call-center-language-intent-detection.md
β”‚   β”‚   └── edge-threat-intelligence-llm.md
β”‚   β”œβ”€β”€ agriculture-precision-farming/
β”‚   β”‚   β”œβ”€β”€ voice-command-machinery-control.md
β”‚   β”‚   β”œβ”€β”€ farmer-assistant-chatbots.md
β”‚   β”‚   └── natural-language-report-generation.md
β”‚   β”œβ”€β”€ manufacturing/
β”‚   β”‚   β”œβ”€β”€ voice-operated-maintenance.md
β”‚   β”‚   β”œβ”€β”€ defect-report-llm.md
β”‚   β”‚   └── predictive-language-agents.md
β”‚   └── smart-cities/
β”‚       β”œβ”€β”€ multilingual-public-announcements.md
β”‚       β”œβ”€β”€ emergency-alert-llm.md
β”‚       └── citizen-feedback-analysis.md
β”œβ”€β”€ edge-optimization-lab/
β”‚   β”œβ”€β”€ model-quantization/
β”‚   β”‚   β”œβ”€β”€ int8-quantization-for-llm.md
β”‚   β”‚   └── post-training-quantization-llm.md
β”‚   β”œβ”€β”€ pruning-techniques/
β”‚   β”‚   β”œβ”€β”€ structured-pruning-llms.md
β”‚   β”‚   └── adaptive-pruning-edge.md
β”‚   β”œβ”€β”€ federated-learning/
β”‚   β”‚   β”œβ”€β”€ privacy-preserving-llm.md
β”‚   β”‚   └── distributed-fine-tuning.md
β”‚   β”œβ”€β”€ compiler-targets/
β”‚   β”‚   β”œβ”€β”€ onnx-runtime-for-llms.md
β”‚   β”‚   └── tvm-compiler-usage.md
β”‚   └── hardware-specific-optimization/
β”‚       β”œβ”€β”€ nvidia-jetson-llm-optimization.md
β”‚       β”œβ”€β”€ intel-openvino-llm.md
β”‚       β”œβ”€β”€ raspberry-pi-llm.md
β”‚       └── microcontroller-tinyml-language.md
β”œβ”€β”€ production-pipelines/
β”‚   β”œβ”€β”€ ci-cd-for-edge.md
β”‚   β”œβ”€β”€ monitoring/
β”‚   β”‚   β”œβ”€β”€ drift-detection-llm.md
β”‚   β”‚   └── edge-llm-metrics-dashboard.md
β”‚   β”œβ”€β”€ ota-updates.md
β”‚   └── edge-security/
β”‚       β”œβ”€β”€ secure-boot-implementation.md
β”‚       β”œβ”€β”€ data-encryption-edge.md
β”‚       β”œβ”€β”€ threat-detection/
β”‚       β”‚   β”œβ”€β”€ anomaly-detection-text.md
β”‚       β”‚   └── adversarial-attack-defense.md
β”‚       β”œβ”€β”€ privacy-preserving-llm/
β”‚       β”‚   β”œβ”€β”€ federated-learning-techniques.md
β”‚       β”‚   └── differential-privacy.md
β”‚       β”œβ”€β”€ model-security/
β”‚       β”‚   └── adversarial-robustness.md
β”‚       β”œβ”€β”€ edge-device-hardening/
β”‚       β”‚   β”œβ”€β”€ secure-deployment.md
β”‚       β”‚   └── secure-communication.md
β”‚       └── industry-compliance/
β”‚           β”œβ”€β”€ regulatory-standards.md
β”‚           └── ethical-ai-guidelines.md
β”œβ”€β”€ reference-architectures/
β”‚   β”œβ”€β”€ language-model-hardware.md
β”‚   β”œβ”€β”€ edge-server-specs.md
β”‚   β”œβ”€β”€ iot-connectivity.md
β”‚   └── edge-cloud-hybrid-models.md
└── integration/
    β”œβ”€β”€ cs-notebook-redirects.md
    β”œβ”€β”€ companion-resources.md
    └── industry-specific-regulations.md

Getting Started

Important

This project uses a submodule edge-ai-engineering located in lab/edge-ai-engineering. Please initialize submodules after cloning the repository: git submodule update --init --recursive

  1. Clone this repository:
git clone https://github.com/afondiel/edge-language.git
  1. Explore the Edge AI Engineering for foundational knowledge.
  2. Dive into Industry Blueprints for hands-on, sector-specific language AI guides.
  3. Use the Edge Optimization Lab and Production Pipeline for deployment and scaling.

Contributing

See CONTRIBUTING.md for guidelines on how to contribute, report issues, or suggest new blueprints.

License

Distributed under the MIT License. See LICENSE for more information.

Resources

Technical Guides:

Curated Lists:

Books:

Back to the Top

Releases

No releases published

Packages

No packages published