-
Notifications
You must be signed in to change notification settings - Fork 90
Added new initil assumptions with boostings #1359
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Hello @dmitryglhf! Thanks for updating this PR. We checked the lines you've touched for PEP 8 issues, and found: There are currently no PEP 8 issues detected in this Pull Request. Cheers! 🍻 Comment last updated at 2025-01-23 15:41:19 UTC |
|
/fix-pep8 |
|
All PEP8 errors has been fixed, thanks ❤️ Comment last updated at Tue, 18 Feb 2025 16:48:09 |
|
Discovered three most useful assumptions.
Pipelines and full comparison tableFull comparison table: full_comparison.xlsx Full tables for each pipeline: |
…FEDOT into new-initial-assumptions
Codecov ReportAttention: Patch coverage is
Additional details and impacted files@@ Coverage Diff @@
## master #1359 +/- ##
==========================================
+ Coverage 80.15% 80.58% +0.43%
==========================================
Files 146 146
Lines 10515 10515
==========================================
+ Hits 8428 8474 +46
+ Misses 2087 2041 -46 ☔ View full report in Codecov by Sentry. 🚀 New features to boost your workflow:
|
|
@nicl-nno Среди трех начальных приближений стоит оставить все или же только то, которое улучшает метрики больше остальных? |
Зависит от того, меняется ли лидер при смене группы датасетов. Если везде +-один вариант доминирует - то можно его иоставить. |
|
Looks like FEDOT mostly choosing and modifying DetailsBinary classification: binary_class_datasets = [
'blood-transf.arff.csv', 'christine.arff.csv', 'jasmine.arff.csv',
'phoneme.arff.csv', 'sylvine.arff.csv',
]Multiclass classification: multi_class_datasets = [
'car.arff.csv', 'cnae-9.arff.csv', 'dilbert.arff.csv', 'fabert.arff.csv',
'mfeat-factors.arff.csv', 'segment.arff.csv', 'vehicle.arff.csv'
]Regression: regression_datasets = [
'analcatdata_negotiation.arff.csv', 'bodyfat.arff.csv', 'cleveland.arff.csv',
'cloud.arff.csv', 'kin8nm.arff.csv', 'liver-disorders.arff.csv'
] |
А это хорошо или плохо? |
Это промежуточное сообщение, чтобы не потерять результаты, хотел по нему задать вопрос.
|
This is a 🔨 code refactoring.
Summary
New Initial Assumptions: Updated initial assumptions by adding boosting-based solutions (CatBoost, XGBoost, LightGBM).
Comparison table between old and new assumptions (validated on automlbenchmark small dataset 1h8c):
Context
Closes #1341