Analyze Wake County Fire Department data to understand response times, station performance, and peak hours for fire calls, focusing on actual fire incidents.
- File:
Fire_Incidents.csv - Columns include:
X,Y,OBJECTID,incident_number,incident_type,incident_type_description,arrive_date_time,cleared_date_time,dispatch_date_time,exposure,platoon,station,address,address2,apt_room,GlobalID,CreationDate,Creator,EditDate,Editor
X Y OBJECTID incident_number incident_type incident_type_description arrive_date_time cleared_date_time dispatch_date_time exposure platoon station address
-78.62660452 35.87021286 474765 07-0031665 NULL 2007/11/15 11:17:00+00 2007/11/15 11:25:00+00 2007/11/15 11:10:00+00 0 6647 LAKE HILL DR RALEIGH, NC 27601
-78.69364226 35.79289581 474766 08-0017918 NULL 2008/06/29 06:20:00+00 2008/06/29 06:42:00+00 2008/06/29 06:17:00+00 0 539 METHOD RD RALEIGH, NC 27606
-78.6277871 35.81217058 474767 08-0032426 NULL 2008/11/18 04:19:00+00 2008/11/18 04:24:00+00 2008/11/18 04:12:00+00 0 2100 RUARK CT RALEIGH, NC 27601
-78.59542157 35.76121328 474768 07-0023051 444 Power line down 2007/08/21 22:52:00+00 2007/08/21 22:58:00+00 2007/08/21 22:47:00+00 0 A 12 1216 BEVERLY DR RALEIGH, NC 27601
- R Libraries:
tidyverse,lubridate,dplyr,tidyr,data.table,ggplot2
- Clean and preprocess data
- Calculate response times
- Summarize average, median, min, and max response times by station
- Analyze trends over time
- Identify peak hours for fire calls
- Separate analysis for actual fires
- Cleaned dataset (
clean_fire_incidents_data) - Station summary tables (
station_summary,actual_fire_station_summary) - Hourly call counts (
dispatch_hour_count,actual_fire_dispatch_hour_count) - Visualizations: response times over time by station
- Place
Fire_Incidents.csvin your working directory. - Run the R script.
- Explore tables and visualizations to uncover fire response patterns.
- Some stations respond faster on average than others.
- Response times fluctuate over time, possibly due to varying call volume or staffing.
- Peak call times help identify when the department is busiest, aiding resource planning.