Gemini DeepSearch MCP is an automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research. It generates sophisticated queries, synthesizes information from search results, identifies knowledge gaps, and produces high-quality, citation-rich answers.
- Automated multi-step research using Gemini models and Google Search
- FastMCP integration for both HTTP API and stdio deployment
- Configurable effort levels (low, medium, high) for research depth
- Citation-rich responses with source tracking
- LangGraph-powered workflow with state management
Start the LangGraph development server with Studio UI:
make devStart the MCP server with stdio transport for integration with MCP clients:
make localRun the test suite:
make testTest the MCP stdio server:
make test_mcpUse MCP inspector
make inspectWith Langsmith tracing
GEMINI_API_KEY=AI******* LANGSMITH_API_KEY=ls******* LANGSMITH_TRACING=true make inspectThe deep_search tool accepts:
- query (string): The research question or topic to investigate
- effort (string): Research effort level - "low", "medium", or "high"
- Low: 1 query, 1 loop, Flash model
- Medium: 3 queries, 2 loops, Flash model
- High: 5 queries, 3 loops, Pro model
HTTP MCP Server (Development mode):
- answer: Comprehensive research response with citations
- sources: List of source URLs used in research
Stdio MCP Server (Claude Desktop integration):
- file_path: Path to a JSON file containing the research results
The stdio MCP server writes results to a JSON file in the system temp directory to optimize token usage. The JSON file contains the same answer and sources data as the HTTP version, but is accessed via file path rather than returned directly.
- Python 3.12+
GEMINI_API_KEYenvironment variable
Install directly using uvx:
uvx install gemini-deepsearch-mcpTo use the MCP server with Claude Desktop, add this configuration to your Claude Desktop config file:
Edit ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}Edit %APPDATA%/Claude/claude_desktop_config.json:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}Edit ~/.config/claude/claude_desktop_config.json:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}Important:
- Replace
your-gemini-api-key-herewith your actual Gemini API key - Restart Claude Desktop after updating the configuration
- Set ample timeout to avoid
MCP error -32001: Request timed out
For development or if you prefer to run from source:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uv",
"args": ["run", "python", "main.py"],
"cwd": "/path/to/gemini-deepsearch-mcp",
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
}
}
}
}Replace /path/to/gemini-deepsearch-mcp with the actual absolute path to your project directory.
Once configured, you can use the deep_search tool in Claude Desktop by asking questions like:
- "Use deep_search to research the latest developments in quantum computing"
- "Search for information about renewable energy trends with high effort"
The deep search agent is from the Gemini Fullstack LangGraph Quickstart repository.
MIT