Get support from BLACKTREES or on Github
Pydanql offers a streamlined way to interact with PostgreSQL databases using Python. This library combines robust database connection management, data modeling, and CRUD (Create, Read, Update, Delete) functionalities. Additionally, built-in logging features make debugging and error handling more straightforward.
The following example demonstrates how to use the Pydanql library for database interactions. This assumes that the necessary classes—Database, Table, and ObjectBaseModel—are imported from Pydanql.
from pydanql.base import Database
from pydanql.table import Table
# ObjectBaseModel is a Pydantic BaseModel equipped with default fields such as id, slug, date_created, and date_last_edit.
from pydanql.model import ObjectBaseModel
# Define the Book model using Pydantic
class Book(ObjectBaseModel):
name: str
author: str
year: int
# Initialize the database connection
db = Database(database='test_db', user='username', password='password', host='localhost', port=5432)
# Set up a table for books
db.books = Table(db, Book)
# Add a new Book to the database
new_book = Book(name="The Lord of the Rings", author="J. R. R. Tolkien", year=1964)
db.books.add(new_book)
# Retrieve and display Books from the database
books = db.books.find_many()
for book in books:
print(book)
# Close the database connection
db.close()To install the Pydanql library, run the following pip command:
pip install pydanqlCreate a user and a database
psql postgres # Connect to your database serverCREATE DATABASE testdb;
CREATE USER testuser WITH PASSWORD 'testpass';
GRANT ALL PRIVILEGES ON DATABASE testdb TO testuser;Database: Manages the connection to a PostgreSQL database.ObjectBaseModel: An enhanced Pydantic model with predefined fields.Table: A utility class for CRUD operations on database tables.DatabaseError: A specialized exception class for database-related issues.
-
Create a new record:
new_car = Car(brand="Tesla", model="Model S", year=2020, color="Blue", miles=1000.5) db.cars_table.add(new_car)
-
Update an existing record:
existing_car = db.cars_table.find_one(id=1) existing_car.color = "Green" db.cars_table.replace(existing_car)
-
Delete an existing record:
existing_car = db.cars_table.find_one(id=1) db.cars_table.delete(existing_car)
-
Find records with queries:
Pydanql supports multiple types of queries to provide you with powerful search functionality. Below are some examples of how to use different query types.
-
Exact Match:
blue_cars = db.cars_table.find_many(color='Blue')
-
Like Query:
similar_colors = db.cars_table.find_many(color={'like': 'blu'})
-
Range Query:
recent_cars = db.cars_table.find_many(year={'range': [2015, 2021]})
-
In Query:
cars_by_models = db.cars_table.find_many(model={'in': ['Model S', 'Model X']})
-
Greater Than (gt):
high_mileage_cars = db.cars_table.find_many(miles={'gt': 50000})
-
Less Than (lt):
low_mileage_cars = db.cars_table.find_many(miles={'lt': 30000})
-
Sorting, Offset and Count:
db.cars_table.find_many(sort='-year', offset=10, count=10)
-
Single Record:
newest_car = db.cars_table.find_one(sort='-year')
-
By using these query types, you can execute more complex searches and filters on your records, making Pydanql a versatile tool for interacting with your PostgreSQL database.
-
Count records:
total_cars = db.cars_table.count()
-
Simple pagination:
page_1_results = db.cars_table.page(page_number=1, page_size=5)
-
Model with more complex data types and a custom method:
class Book(ObjectBaseModel): name: str author: str year: int available: bool dimensions: Tuple = Field(default=(8,8), data_type="int[]", constraints=["NOT NULL"]) meta: Dict = Field(default={}, data_type="JSONB", constraints=["NOT NULL"]) def description(self): return f"Title: {self.name}, Author: {self.author}, Year: {self.year}" new_book = Book(name="The Lord of the Rings", author="J. R. R. Tolkien", available=True, year=1964, dimensions=(16,23), meta={ 'language': 'en' }) db.books.add(new_book) # Invoke the custom description method print(new_book.description())
Pydanql is licensed under the MIT license.