Skip to content

cybergis/CyberGIS-Vis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CyberGIS-Vis

CyberGIS_Vis.PNG

CyberGIS-Vis is an open-source software tool for interactive geospatial visualization and scalable visual analytics.


CyberGIS-Vis integrates cutting-edge cyberGIS and online visualization capabilities into a suite of software modules for visualization and visual analytical approaches to knowledge discovery based on geospatial data. Key features of the current CyberGIS-Vis implementation include: (1) comparative visualization of spatiotemporal patterns through choropleth maps; (2) dynamic cartographic mapping linked with charts to explore high-dimensional data; (3) reproducible visual analytics through integration with CyberGIS-Jupyter; and (4) multi-language support including both Python and Javascript. Firefox is the recommended web browser for reaping the best performance of CyberGIS-Vis.



QuickStart

Example visaulizations are available in the two folders below:

  • Quantitative_Data_Vis
  • Categorical_Data_Vis

You can run CyberGIS-Vis in your Jupyter Notebook installed on your PC as well as in CybearGISX. We recommend that you use CyberGISX because all the required packages have been integrated in CyberGISX.

To use it in CyberGISX, follow steps below:

  1. If you do not have a CyerGISX account, create a CyberGISX account with your GitHub id at https://cybergisxhub.cigi.illinois.edu
  2. Begin by clicking the yellow 'Open with CyberGISX' button in this published notebook, available at this link.

To run in the loca environment, follow steps below.

  1. Download and install Anaconda at https://www.anaconda.com/.
  2. After installation is done, open "Anaconda Prompt" and enter command lines below to create an environment.
        conda create -n geo-env -c conda-forge geopandas
        conda activate geo-env
        conda install -c conda-forge jupyterlab
        jupyter lab
  1. Open Python Script below.
        Quantitative_Data_Vis/Adaptive_Chropleth_Mapper.py
        Categorical_Data_Vis/Qualitative_Analysis_Mapper.py
  1. Comment and uncomment out like below. These are related to create URLs in the Jupyter Server.
	#from jupyter_server import serverapp

	#jupyter_envs = {k: v for k, v in os.environ.items() if k.startswith('JUPYTER')}
	#temp_server = jupyter_envs['JUPYTER_INSTANCE_URL']
	
	#servers = list(serverapp.list_running_servers())
	#servers1 = temp_server+servers[0]["base_url"]+ 'view'
	#servers2 = temp_server+servers[0]["base_url"]+ 'edit'
	
	local_dir1 = cwd
	local_dir2 = cwd 
	
	#local_dir1 = servers1 + cwd + '/'
	#local_dir2 = servers2 + cwd + '/' 
  1. Open Jupyter notebook below and run.
        Quantitative_Data_Vis/Adaptive_Chropleth_Mapper.ipynb
        Categorical_Data_Vis/Qualitative_Analysis_Mapper.ipynb



Getting Started with Spatiotemporal Modules in CyberGIS-Vis: Tutorial Videos

Start from the published notebook

01_Start.mp4



Explore spatiotemporal patterns of your data using the Multiple Linked Chart

02_ACM_MLC_v2.mp4



Explore spatiotemporal patterns of your data using the Comparison Line Chart

CLC.mp4



Visualization Modules

Images below show visualizations that you can create using CyberGIS-Vis. Click the image to see the full size.

Quntitative Data Visualization

  • Adaptive Choropleth Mapper (ACM)
  • Adaptive Choropleth Mapper with Stacked Chart
    • The Stacked Chart visualizes the temporal change. Click to see demo.
  • ACM
  • Adaptive Choropelth Mapper with Correlogram
  • ACM_Correlogram
  • Adaptive Choropleth Mapper with Scatter Plot
  • ACM_Scatter
  • Adaptive Choropleth Mapper with Parallel Coordinate Plot (PCP)
  • ACM_PCP
  • Adaptive Choropleth Mapper with Multiple Linked Chart (MLC)
  • ACM_MLC
  • Adaptive Choropleth Mapper with Comparison Line Chart (CLC)
  • ACM_CLC

Categorical Data Visualization

  • Qualitative_Analysis_Mapper
  • Qual
  • Qualitative_Analysis_Mapper with Stacked Chart
    • The Stacked Chart visualizes the temporal change of categorical data in a quantitative way. Click to see demo.
    Qual_Stacked
  • Qualitative_Analysis_Mapper with Parallel Categories Diagram
    • Parallel Categories Diagram represents how the categorical data changes over time in quantity. Click to see demo.
    Qual_PCD
  • Qualitative_Analysis_Mapper with Chord Diagram
    • The Chord Diagram quantifies changes of categorical data between the two periods. Click to see demo.

Qual_CD

Input Parameters

Input Parameters for Visualizing Adaptive Choropleth Maps.

Parameter Required Description
title Enter the title to display at the top of your result visualization.
Subject Enter the text to display at the top of your chart.
filename_suffix Specify the name of the folder where your result files will be saved.
inputCSV Specify the attributes from your input data.
shapefile Provide the shapefile that includes the geometry of your study area.
periods Enter "All" to visualize all dates from the 'period' column of your input data. To visualize specific periods, provide the desired values from the 'period' column as an array (e.g., [2020, 2021, 2023]). Ensure these values match the entries in your data.
variables Enter the names of the columns in your input data to include in the visualization.
NumOfMaps Specify the number of maps to display in your result visualization.
SortLayers Choose between 'compare' or 'temporal' mode:
- Compare Mode: Compare variables at a specific point in time.
- Temporal Mode: Display spatiotemporal patterns of the same variable across multiple maps.
InitialLayers Enter the variables to display by default on your maps.
Initial_map_center Enter the longitude and latitude of the center of your study area in decimal degrees. If left blank, the map will automatically center based on your data.
Initial_map_zoom_level Enter a number between 2 and 15 for the zoom level. If left blank, the maps will automatically adjust the zoom level.
Map_width Specify the width of the maps. If left blank, the default is 500px.
Map_height Specify the height of the maps. If left blank, the default is 500px.

Input parameters for visualizing charts.

Parameter Required Description
Top10_Chart Enter True or False. Set to True to display a bar chart representing the top and bottom values within the right map. If False, the chart will not be displayed. If left blank, False is the default.
Multiple_Line_Chart Enter True or False. Set to True to display a Multiple Line Chart. If False, it will not be displayed. If left blank, False is the default.
Comparision_Chart Enter True or False. Set to True to display a Comparision Line Chart. If False, it will not be displayed. If left blank, False is the default.
Stacked_Chart Enter True or False. Set to True to display a Stacked Chart. If False, it will not be displayed. If left blank, False is the default.
Correlogram Enter True or False. Set to True to display a Correlogram. If False, it will not be displayed. If left blank, False is the default.
Scatter_Plot Enter True or False. Set to True to display a Scatter Chart. If False, it will not be displayed. If left blank, False is the default.
Parallel_Coordinates_Plot Enter True or False. Set to True to display a Parallel Coordinates Plot. If False, it will not be displayed. If left blank, False is the default.

Input parameters for visualizing 'Multiple Line Chart'.

Parameter Required Description
titlesOfMLC Enter a title for each line chart to be displayed at the top of the chart in the Multiple Line Chart. If left blank, a line chart will be created for each variable in your input attribute file.
NumOfMLC Specify the number of line charts to include in the Multiple Line Chart. If left blank, the number of charts will default to the number of variables entered in the 'Variables' parameter above.
InitialVariableMLC Specify the variables to be displayed on the line chart. If left blank, the variables in your input attribute file will be visualized in order.
DefaultRegion_MLC Enter the 'id' from your attribute table to specify the default region displayed in the Multiple Line Chart. If left blank, the first region listed in your attribute table will be used.
HighlightMLC Define the highlighted ranges for the x-axis values (periods) by specifying the start, end periods and color for the range you emphasize - e.g., [['2025-01-06', '2025-01-30', "#fdff32"]]

Input parameters for visualizing 'Comparison Line Chart'.

Parameter Required Description
NumOfCLC Specify the number of line charts to include in the Comparision Line Chart. If left blank, the number of charts will default to the number of variables entered in the 'Variables' parameter above.
InitialVariableCLC Specify the variables to be displayed on the line chart. If left blank, the variables in your input attribute file will be visualized in order.
DefaultRegion_CLC Enter the 'id' of two regions to display the temporal patterns of the selected variable in the Comparison Line Chart. If left blank, the first two regions in your attribute table will be used.
HighlightCLC Define the highlighted ranges for the x-axis values (periods) by specifying the start and end periods for the range you emphasize.

Input parameters for visualizing 'Parallel Coordinates Plot'.

Parameter Required Description
NumOfPCP Enter True or False. Set to True to display a Parallel Coordinates Plot. If False, it will not be displayed. If left blank, False is the default.
InitialVariablePCP Specify the variables to be displayed on Parallel Coordinates Plot. If left blank, the variables in your input attribute file will be visualized in order.

Data

Visualizations created by CyberGIS-Vis are using following datasets:

  1. A small subset of LTDB. The LTDB offers decennial socioeconomic and demographic data with harmonized boundaries from 1970 to 2010. For access to the complete dataset, please visit the official website for download
  2. The New York Times. (2021). Coronavirus (Covid-19) Data in the United States. Retrieved [08/01/2024], from https://github.com/nytimes/covid-19-data
  3. American Community Survey (ACS) - U.S. Census Bureau

Related Resources

Contributors

Dr. Su Yeon Han, a leading developer and faculty member in the Department of Geography and Environmental Studies at Texas State University. This repository is the advanced version of CyberGIS-Vis, which can be accessed at: https://github.com/cybergis/CyberGIS-Vis.

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Funding

The CyberGIS-Vis project is supported by Department of Geography and Environmental Studies at Texas State University and CyberGIS Center for Advanced Digital and Spatial Studies at the University of Illinois at Urbana-Champaign.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •