Skip to content

deeenes/progeny-py

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

progeny-py

This is a Python implementation of the package PROGENy for pathway activity prediction from transcriptomics data. In this implementation, PROGENy uses the scanpy framework.

Installation

The package can easly be installed using pip

pip install git+https://github.com/saezlab/progeny-py.git

Citing PROGENy

Besides the original paper, there are two additional publication describing expansions of PROGENy usage.

  • If you use PROGENy for your research please cite the original publication:

Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, Garnett MJ, Blüthgen N, Saez-Rodriguez J. “Perturbation-response genes reveal signaling footprints in cancer gene expression.” Nature Communications: 10.1038/s41467-017-02391-6

  • If you use for mouse or you use the expanded version containing 14 pathways, please cite additionally:

Holland CH, Szalai B, Saez-Rodriguez J. "Transfer of regulatory knowledge from human to mouse for functional genomics analysis." Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2019. DOI: 10.1016/j.bbagrm.2019.194431.

  • If you apply PROGENy on single-cell RNA-seq data please cite additionally:

Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP, Mereu E, Joughin BA, Stegle O, Lauffenburger DA, Heyn H, Szalai B, Saez-Rodriguez, J. "Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data." Genome Biology. 2020. DOI: 10.1186/s13059-020-1949-z.

About

PROGENY Python implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.0%
  • Python 3.0%