Releases: dpeerlab/Palantir
Releases · dpeerlab/Palantir
v1.4.2
- Fix "lightgray" error in
plot_trend - Address pygam incompatibility with newer scipy versions (automatic skip in tests, user warnings)
- Address fcsparser incompatibility with NumPy 2.0 (automatic skip in tests, user warnings)
- Use different joblib backend in Python 3.12+ with joblib < 1.5 to avoid ResourceTracker warnings
- More convenient cell-name handling for integers (e.g., in spatial data) with automatic type conversion
v1.4.1
v1.4.0
- Made pygam an optional dependency that can be installed with
pip install palantir[gam]orpip install palantir[full] - Added proper conditional imports and improved error handling for pygam
- Enhanced
run_magic_imputationto return appropriate data types for different inputs - Updated code to use direct AnnData imports for newer compatibility
- Improved version detection using
importlib.metadatawith graceful fallbacks - Fixed Series indexing deprecation warnings in early cell detection functions
- Expanded and standardized documentation with NumPy-style docstrings throughout the codebase
- Added comprehensive type hints to improve code quality and IDE support
- Remove dependency from
_methods in scanpy for plotting. - add
pseudotime_intervalargument to control path length inpalantir.plot.plot_trajectory
v1.3.6
v1.3.4
v1.3.3
v1.3.2
v1.3.1
- implemented
palantir.plot.plot_statsto plot arbitray cell-wise statistics as x-/y-positions. - reduce memory usgae of
palantir.presults.compute_gene_trends - removed seaborn dependency
- refactor
run_diffusion_mapsto split outcompute_kernelanddiffusion_maps_from_kernel - remove unused dependency
tables
v1.3.0
New Features
- Enable an AnnData-centric workflow for improved usability and interoperability with other single-cell analysis tools.
- Introduced new utility functions
palantir.utils.early_cellTo automate fining an early cell based on cell type and diffusion components.palantir.utils.find_terminal_statesTo automate finding terminal cell states based on cell type and diffusion components.palantir.presults.select_branch_cellsTo find cells associated to each branch based on fate probability.palantir.plot.plot_branch_selectionTo inspect the cell to branch association.palantir.utils.run_local_variabilityTo compute local gene expression variability.palantir.utils.run_densityA wrapper for mellon.DensityEstimator.palantir.utils.run_density_evaluationEvaluate computed density on a different dataset.palantir.utils.run_low_density_variability. To aggregate local gene expression variability in low density.palantir.plot.plot_branch. To plot branch-selected cells over pseudotime in arbitrary y-postion and coloring.palantir.plot.plot_trend. To plot the gene trend ontop ofpalantir.plot.plot_branch.
- Added input validation for better error handling and improved user experience.
- Expanded documentation within docstrings, providing additional clarity for users and developers.
Enhancements
- Updated tutorial notebook to reflect the new workflow, guiding users through the updated processes.
- Implemented gene trend computation using Mellon, providing more robust and efficient gene trend analysis.
- Enable annotation in
palantir.plot.highight_cells_on_umap.
Changes
- Replaced PhenoGraph dependency with
scanpy.tl.leidenfor gene trend clustering. - Deprecated the
run_tsne,determine_cell_clusters, andplot_cell_clustersfunctions. Use corresponding implementations from Scanpy, widely used single-cell analysis library and direct dependecy of Palantir. - Rename
palantir.plot.highight_cells_on_tsnetopalantir.plot.highight_cells_on_umap - Depend on
anndata>=0.8.0to avoid issues writing dataframes inad.obsm.
Fixes
- Addressed the issue of variability when reproducing results (issue#64), enhancing the reproducibility and reliability of Palantir.
v1.2.0
Minor bug fixes.