Skip to content

e7canasta/orion-care-sensor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

91 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌟 Orion - Smart AI Sensor for Care Scene

Real-time video inference system for geriatric patient monitoring

"OriΓ³n Ve, No Interpreta" (Orion Sees, Doesn't Interpret)

Orion is an edge-first AI sensor that captures video streams and produces structured inference outputs for the Care Scene ecosystem.


🎯 What is Orion?

Orion is NOT:

  • ❌ A competitor to Frigate NVR (end-user product)
  • ❌ A competitor to DeepStream/DL Streamer (monolithic frameworks)
  • ❌ An interpretation or decision engine

Orion IS:

  • βœ… A configurable "smart sensor" for distributed architectures
  • βœ… Best-in-class for event-driven AI sensor deployments
  • βœ… A building block for larger monitoring systems (Care Scene)
  • βœ… Hardware-agnostic (ONNX enables GPU acceleration)

πŸ—οΈ Architecture

Technology Stack

  • Go 1.x: Orchestration, streaming pipeline, control plane
  • Python 3.x: ONNX inference workers (YOLO11 person detection)
  • GStreamer: Video capture from RTSP streams
  • MQTT: Event-driven control and data distribution
  • ONNX Runtime: Multi-model ML inference
  • MsgPack: High-performance binary serialization (5x faster than JSON+base64)

Core Design Philosophy

  1. Complexity by Design, Not by Accident - Attack complexity through architecture
  2. Pragmatic Performance - Real-time responsiveness > completeness
  3. Non-blocking Channels - Drop frames to maintain <2s latency
  4. Hybrid Go-Python - Go for orchestration, Python for ML
  5. MQTT-centric Control - Hot-reload without service restart
  6. KISS Auto-Recovery - One restart attempt only

πŸš€ Quick Start

Prerequisites

  • Go 1.21+
  • Python 3.10+
  • GStreamer 1.20+
  • MQTT broker (Mosquitto)

Build & Run

# Build binary
make build

# Run with default config
make run

# Run with debug logging
./bin/oriond --debug

# Run with custom config
./bin/oriond --config path/to/orion.yaml

Configuration

Primary config: config/orion.yaml

instance_id: orion-hab-302
room_id: hab_302

camera:
  rtsp_url: rtsp://camera-ip/stream

stream:
  resolution: 720p
  fps: 30

models:
  person_detector:
    model_path: models/yolo11n.onnx
    max_inference_rate_hz: 1.0

mqtt:
  broker: tcp://localhost:1883

πŸ“‘ MQTT Control Commands

# Get status
mosquitto_pub -t care/control/orion-hab-302 -m '{"command":"get_status"}'

# Pause/Resume inference
mosquitto_pub -t care/control/orion-hab-302 -m '{"command":"pause"}'
mosquitto_pub -t care/control/orion-hab-302 -m '{"command":"resume"}'

# Change inference rate
mosquitto_pub -t care/control/orion-hab-302 -m '{"command":"set_inference_rate","rate_hz":2.0}'

# Hot-reload model size
mosquitto_pub -t care/control/orion-hab-302 -m '{"command":"set_model_size","size":"m"}'

πŸ—ΊοΈ Roadmap

See docs/DESIGN/ORION_2.0_PLAN_EVOLUTIVO.md for detailed roadmap.

Phases

  • βœ… Fase 1 (v1.0 β†’ v1.5): Foundation - Bounded contexts, single-stream, hot-reload
  • πŸ”„ Fase 2 (v1.5 β†’ v2.0): Scale - Multi-stream (4-8 rooms), resource management
  • πŸ“… Fase 3 (v2.0 β†’ v3.0): Intelligence - Cell orchestration, motion pooling

πŸ“š Documentation

Architecture

Development


🎸 Design Philosophy: "Blues Style"

"Las buenas prΓ‘cticas son vocabulario de diseΓ±o - las practicas para tenerlas disponibles cuando improvises, no porque la partitura lo diga."

  • βœ… DDD for bounded contexts clarity
  • βœ… SOLID where it matters
  • βœ… Pragmatism for utilities
  • ❌ NO Hexagonal "because best practice"
  • ❌ NO DI everywhere "because SOLID"

Read the scales, improvise with context.


🀝 Contributing

This is a B2B consultative product. Contact Visiona for collaboration.

Development Workflow

  1. Read CLAUDE.md + Big Picture.md before coding
  2. Attack complexity through architecture, not code tricks
  3. Validate compilation as primary test
  4. Document architectural decisions (ADR style)

Commit Standards

  • Co-authored by: Gaby de Visiona <noreply@visiona.app>
  • Focus on "why" rather than "what"

πŸ“„ License

Proprietary - Visiona Β© 2024-2025


πŸ”— Related Projects

Part of the Care Scene ecosystem:

  • Orion - Smart sensor (this repo)
  • Scene Experts Mesh - Event interpretation
  • Room Orchestrator - Resource coordination
  • Temporal Supervisor - Continuous learning

Built with pragmatism, designed for scale. πŸš€

About

Smart AI sensor for real-time video inference - edge-first architecture

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published