This is the official pytorch implementation for paper: Information-Bottleneck Driven Binary Neural Network for Change Detection, published in ICCV 2025.
- CUDA (version 11.6)
- Python3 (version 3.8)
- PyTorch
- PCD
- VL_CMU_CD
- LEVIR-CD
Please follow this site to download the PCD dataset. You may need to send e-mails to Prof. Ken Sakurada or Prof. Takayuki Okatani.
For VL_CMU_CD, please check this issue.
Please follow this site to download the LEVIR-CD dataset.
- PCD: googleDrive
- VL_CMU_CD: googleDrive
- LEVIR-CD: googleDrive
Our code refers to C-3PO and AERIS.
We use the training&evaluation framework for LEVIR-CD dataset from DGMA2-Net.
If you find the work useful for your research, please cite:
@inproceedings{yin2025bicd,
title={Information-Bottleneck Driven Binary Neural Network for Change Detection},
author={Yin, Kaijie and Zhang, Zhiyuan and Kong, Shu and Gao, Tian and Xu, Chengzhong and Kong, Hui},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2025}
}
Any problem, please contact the first author (Email: yin.kaijie at connect.um.edu.mo)