Skip to content

fblissjr/the-transformation-engine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The Transformation Engine

The Transformation Engine

LLM-powered structured prompts and transformations and other random wackiness for video generation models

Features

  • Multi-Provider Architecture: Use any LLM (OpenRouter 100+ models, OpenAI, Gemini, local servers) for any task
  • Intermediate-First Generation: Create model-agnostic semantic prompts, instantly export to Sora 2, Veo 3, or Generic formats
  • Task-Level Granularity: Assign different providers/models per task (generate, mix, transform, etc.)
  • Streaming Support: Live token streaming with tok/s metrics, cancel generation mid-stream
  • Multi-Turn Conversations: Refine outputs iteratively with conversation tracking
  • Token Tracking: Session-based usage dashboard with provider/task breakdown, export CSV/JSON
  • Generate: Natural language → structured output (YAML, JSON, XML, Markdown, Natural Language)
  • Transform: Convert between formats with mix options (reverse, compress, expand, technical, custom)
  • Mix: Blend multiple prompts into hybrids
  • Library: Local prompt management with search, favorites, versions
  • Media: Image/video conditioning via vision API
  • Transparency: Preview and edit all prompts before sending, customize system prompts, view intermediate representations
  • Settings: 7 tabs (Providers, Tasks, API Key, Model, System Prompts, Tokens, Data)
  • Privacy: 100% client-side, encrypted API keys per provider, network monitoring, audit logs

Screenshots

Main Interface

Three-panel layout with prompt library, input controls, and structured output.

Main Interface

Prompt Preview & Transparency

View and edit system + user prompts before sending to the API.

Prompt Preview

Media Conditioning & Mixing

Upload images/videos, mix multiple prompts, and use AI vision analysis.

Media Conditioning

Model Selection

Choose from all available Gemini models with real-time availability.

Model Selector

Settings: Model Parameters

Configure temperature, Top P, and max output tokens.

Model Settings

Settings: System Prompts

Customize all 4 core system prompts with live preview.

System Prompts

Settings: Data & Cache

Manage storage and clear cached API responses.

Data Management

Privacy Dashboard

Real-time network monitoring, audit logs, and privacy verification.

Privacy Dashboard

Quick Start

npm install
npm run dev

Open http://localhost:1847 (or custom port via npm run dev -- --port 12345)

API Key Setup: Add providers in Settings → Providers tab (keys stored encrypted with configurable TTL)

Get API keys:

Documentation: User Guide - includes installation, features, and advanced usage

Storage

  • Prompts/intermediates/versions/media/providers/tasks: IndexedDB (browser-local, DB v8)
  • API keys: Encrypted per-provider storage (AES-GCM, configurable TTL, default 7 days)
  • Cache & custom system prompts: localStorage (models list, API responses, edited prompts)

Multi-Provider Architecture: Task-level granularity - assign any provider/model to any task (generate, mix, transform, etc.)

Intermediate Architecture: Prompts stored as model-agnostic Markdown, transformed on-demand to any format (zero extra API calls)

Data only sent to configured provider APIs when you explicitly trigger generation/transformation.

Tech Stack

  • React 19 + TypeScript + Vite + Tailwind v4
  • IndexedDB (idb library) - DB v8
  • Multi-provider LLM support: OpenRouter, OpenAI, Gemini, local servers

Requirements

  • Node.js 18+
  • Modern browser
  • API key for at least one provider (OpenRouter, OpenAI, Gemini, or local server)

License

Apache License 2.0

About

LLM-powered structured prompts and transformations for video generation models, agnostic to provider

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published