- HangZhou
- All languages
- Assembly
- Batchfile
- Bikeshed
- C
- C#
- C++
- CMake
- CSS
- CoffeeScript
- Cython
- Dart
- Dockerfile
- Erlang
- Go
- Groovy
- HTML
- Handlebars
- Haskell
- Java
- JavaScript
- Jinja
- Jupyter Notebook
- Kotlin
- Lua
- MDX
- Makefile
- Mermaid
- Mustache
- Nim
- Nunjucks
- OCaml
- Objective-C
- PHP
- Perl
- Processing
- Python
- QML
- Rich Text Format
- Ruby
- Rust
- SCSS
- SWIG
- Shell
- Smali
- Smarty
- Starlark
- Stylus
- Svelte
- Swift
- TeX
- TypeScript
- Vue
- XSLT
Starred repositories
AutoGPT is the vision of accessible AI for everyone, to use and to build on. Our mission is to provide the tools, so that you can focus on what matters.
Supercharge Your LLM Application Evaluations 🚀
The LLM's practical guide: From the fundamentals to deploying advanced LLM and RAG apps to AWS using LLMOps best practices
🐙 关于提示词工程(prompt)的指南、论文、讲座、笔记本和资源大全(自动持续更新)
🐙 Guides, papers, lessons, notebooks and resources for prompt engineering, context engineering, RAG, and AI Agents.
A research prototype of a human-centered web agent
This repo helps you to build a team of AI agents with Autogen
🧑🚀 全世界最好的LLM资料总结(多模态生成、Agent、辅助编程、AI审稿、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
A framework for efficient model inference with omni-modality models
Ultimate Agentic AI with AutoGen for Enterprise Automation, published by Orange, AVA®
A agent framework based on the tutorial hello-agents
Gemini CLI Tips and Tricks
🐫 CAMEL: The first and the best multi-agent framework. Finding the Scaling Law of Agents. https://www.camel-ai.org
《Agentic Design Patterns》中文翻译版
Ollama 模型 Registry 镜像站 / 加速器,让 Ollama 从 ModelScope 魔搭 更快的 拉取 / 下载 模型。
A comprehensive guide for fine-tuning DeepSeek-R1 (distilled Llama) locally on Apple Silicon Macs. Includes detailed step-by-step instructions, error resolution, and optimization techniques using U…
Local LLM inference speed tests on various devices
📚 《从零开始构建智能体》——从零开始的智能体原理与实践教程
What are the principles we can use to build LLM-powered software that is actually good enough to put in the hands of production customers?
Model Context Protocol(MCP) 编程极速入门