Skip to content

flust/DebiasInRec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Debias 相关论文整理

目录结构:

  • code/ 源码(官方)
  • note/ 笔记

  • paper/ 论文原文

论文列表:

索引 标题 简介 代码
1 Improving Ad Click Prediction by Considering Non-displayed Events 利用无偏集合S_{t}去偏,IPS / CausE / New + FFM https://www.csie.ntu.edu.tw/~cjlin/papers/occtr/ / https://github.com/jyhsia5174/CIKM-2019-EXP (c++)
2 Recommendations as Treatments: Debiasing Learning and Evaluation IPS Estimator https://www.cs.cornell.edu/~schnabts/mnar/ (python)
3 Causal Embeddings for Recommendation Cause Embedding \pi_{c},\pi_{t}, 假设有 S_{c}, S_{t} 一起计算两个矩阵 https://github.com/criteo-research/CausE 缺少数据处理部分(tensorflow)
4 Causal Inference for Recommendation PS / 重构测试集(使得训练集和测试集不同分布)比较因果方法与传统方法 https://github.com/gizemt/CausalRecommendation (.m?)
5 Bias and Debias in Recommender System: A Survey and Future Directions survey
6 The Deconfounded Recommender: A Causal Inference Approach to Recommendation PF -> exposure model / MF -> outcome model
7 Disentangling User Interest and Popularity Bias for Recommendation with Causal Embedding
8 Debiasing Item-to-Item Recommendations With Small Annotated Datasets
9 Unbiased Ad Click Prediction for Position-aware Advertising https://www.csie.ntu.edu.tw/~cjlin/papers/debiases/ / abstract / introduction
10 Unbiased Implicit Recommendation and Propensity Estimation via Combinational Joint Learning abstract / introduction
11 Unbiased Learning for the Causal Effect of Recommendation IPS CIPS / ERM 重点看
12 Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback abstract / introduction
13 Collaborative prediction and ranking with non-random missing data Propensity Estimation via Naive Bayes —— from [2]
14 Observational Studies Propensity Estimation via Logistic Regression —— from [2]
15 Efficient estimation of average treatment effects using the estimated propensity score IPS —— from [11]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published