- All languages
- AMPL
- ANTLR
- APL
- Ada
- Agda
- Arc
- Arduino
- Assembly
- AutoHotkey
- Batchfile
- Bikeshed
- Blade
- Boogie
- Bru
- C
- C#
- C++
- CSS
- Click
- Clojure
- CodeQL
- CoffeeScript
- Common Lisp
- Common Workflow Language
- Coq
- Crystal
- Cuda
- Cython
- D
- Dafny
- Dart
- Dockerfile
- Eagle
- Elixir
- Elm
- Emacs Lisp
- Erlang
- F#
- F*
- Flix
- Fluent
- Fortran
- Frege
- Gherkin
- Gleam
- Go
- Go Template
- Grammatical Framework
- Groovy
- HCL
- HTML
- Handlebars
- Haskell
- Haxe
- Idris
- Inform 7
- Jai
- Janet
- Java
- JavaScript
- Jinja
- Julia
- Jupyter Notebook
- Just
- Kaitai Struct
- Kotlin
- LLVM
- LabVIEW
- Lean
- Lua
- MATLAB
- MAXScript
- MDX
- MLIR
- Macaulay2
- Makefile
- Markdown
- Mathematica
- MiniZinc
- Mojo
- Mustache
- NetLogo
- Nim
- Nix
- Nunjucks
- Nushell
- OCaml
- Objective-C
- Objective-C++
- Odin
- OpenQASM
- PHP
- PLSQL
- PLpgSQL
- Pascal
- Perl
- Perl 6
- PostScript
- PowerShell
- Prolog
- Promela
- Pug
- PureScript
- Python
- R
- RMarkdown
- Racket
- Raku
- ReScript
- Reason
- Red
- Rich Text Format
- Roc
- Rocq Prover
- Roff
- Ruby
- Rust
- SCSS
- SWIG
- Scala
- Scheme
- Shell
- Smalltalk
- Smarty
- Solidity
- Stan
- Standard ML
- Starlark
- Svelte
- Swift
- TSQL
- TeX
- Thrift
- Tree-sitter Query
- Turing
- Twig
- TypeScript
- Typst
- V
- Vim Script
- Visual Basic .NET
- Vue
- WebAssembly
- Wren
- XSLT
- YAML
- YARA
- Zig
- jq
- q
Starred repositories
Relax! Flux is the ML library that doesn't make you tensor
Modeling language for Mathematical Optimization (linear, mixed-integer, conic, semidefinite, nonlinear)
Bayesian inference with probabilistic programming.
A Julia package for probability distributions and associated functions.
Pre-built implicit layer architectures with O(1) backprop, GPUs, and stiff+non-stiff DE solvers, demonstrating scientific machine learning (SciML) and physics-informed machine learning methods
Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable i…
A framework for applied category theory in the Julia language
A reinforcement learning package for Julia
High performance ordinary differential equation (ODE) and differential-algebraic equation (DAE) solvers, including neural ordinary differential equations (neural ODEs) and scientific machine learni…
Symbolic expressions, rewriting and simplification
Julia bindings for the Enzyme automatic differentiator
Julia implementation of QuantEcon routines
Dash for Julia - A Julia interface to the Dash ecosystem for creating analytic web applications in Julia. No JavaScript required.
Book on Julia for Data Science
A data structure for mathematical optimization problems
forward and reverse mode automatic differentiation primitives for Julia Base + StdLibs
A Julia Basket of Hand-Picked Krylov Methods
🏔️Optimization on Riemannian Manifolds in Julia