High Performance ยท Rust-based OCR Service
Image text recognition service based on Paddle OCR onnx models, compatible with OpenAI's chat/completions API.
Features โข Quick Start โข CLI Tool โข API Service โข Performance
Languages: English | ็ฎไฝไธญๆ
- ๐ Extreme Performance - Native Rust implementation with memory safety and zero-copy optimization
- ๐ฏ High Accuracy Recognition - Supports the latest Paddle OCR v5 models
- ๐ง Flexible Configuration - Rich parameter configuration to adapt to different scenarios
- ๐ฆ Ready to Use - Simple CLI tool, no programming required
- ๐ API Service - Built-in HTTP API server compatible with OpenAI interface format
- ๐ Concurrent Processing - Multi-threading support for efficient batch request handling
- ๐ Detailed Output - Support for JSON/text formats with confidence information
# Clone the project
git clone https://github.com/go-restream/pp-ocr-rs.git
cd pp-ocr-rs
# Build CLI tool
cargo build --release
# Build API service (with server feature)
cargo build --release --features server# Recognize a single image
./target/release/ocr image.png
# Batch recognize images in directory
./target/release/ocr /path/to/images/
# Start API service
./target/release/ocr serve -c config.yamlOCR Engine - Image text recognition using Paddle OCR
Usage: ocr [OPTIONS] <INPUT>
Arguments:
<INPUT> Image file or directory containing images
Options:
-c, --config <FILE> YAML configuration file path
-f, --format <FORMAT> Output format [text|json] [default: text]
-o, --output <FILE> Output file path
--append Append mode (when outputting to file)
-r, --recursive Process subdirectories recursively
-q, --quiet Quiet mode
-v, --verbose Verbose mode
--pretty-json Pretty JSON output
--include-confidence Include confidence information
--include-processing-time Include processing time information
-h, --help Print help informationCreate config.yaml:
# Model paths
det_model_path: "./models/ch_PP-OCRv5_mobile_det.onnx"
cls_model_path: "./models/ch_ppocr_mobile_v2.0_cls_infer.onnx"
rec_model_path: "./models/ch_PP-OCRv5_rec_mobile_infer.onnx"
# Feature switches
use_angle_cls: false
use_direction_cls: false
# Detection parameters
detection:
box_limit: 50
box_thresh: 0.5
min_box_size: 0.3
unclip_ratio: 1.6
# Output settings
output:
include_confidence: true
pretty_json: true
include_processing_time: true# Use default configuration (listen on 0.0.0.0:8080)
./target/release/ocr serve
# Use configuration file
./target/release/ocr serve --config config.yaml
# Custom bind address and thread count
./target/release/ocr serve --bind 127.0.0.1:9000 --threads 8curl http://localhost:8080/v1/healthcurl http://localhost:8080/v1/modelscurl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "ch_pp_ocr_v5_mobile",
"messages": [{
"role": "user",
"content": [{
"type": "image_url",
"image_url": {
"url": "..."
}
}]
}]
}'import base64
import requests
# Read image
with open('image.png', 'rb') as f:
image_data = base64.b64encode(f.read()).decode('utf-8')
# Send OCR request
response = requests.post(
'http://localhost:8080/v1/chat/completions',
json={
'model': 'ch_pp_ocr_v5_mobile',
'messages': [{
'role': 'user',
'content': [{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{image_data}'
}
}]
}]
}
)
# Parse result
result = response.json()
text = result['choices'][0]['message']['content'][0]['text']
print(f"Recognition result: {text}")| Test Image | Recognition Result | Confidence |
|---|---|---|
| Use Rust to call Paddle OCR models through ONNX Runtime for image text recognition. | 95.27% | |
| ๆฏๅฉด็จๅ่ฟ้ | 99.71% |
- Processing Speed: Mobile model < 100ms/image (CPU)
- Memory Usage: < 200MB (single instance)
- Concurrent Capacity: Support multi-threaded concurrent processing
- Accuracy: > 95% in Chinese scenarios
| Model Name | Type | Features | Use Cases |
|---|---|---|---|
| ch_pp_ocr_v5_mobile | Mobile | Fast speed, small size | Real-time processing, mobile devices |
| ch_pp_ocr_v5_server | Server | High accuracy, better results | Batch processing, high-precision requirements |
- Rust 1.84+
- ONNX Runtime 2.0+
# Install dependencies
cargo build
# Run tests
cargo test
# Run examples
cargo run --example ocr_demoIssues and Pull Requests are welcome!
- Fork this project
- Create feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
This project is licensed under the Apache License 2.0.
- Rapid OCR - Excellent OCR model framework
- Paddle-ocr-rs - Paddle OCR Rust model library
If this project helps you, please give it a โญ๏ธ!
GitHub โข Documentation โข Examples
Languages: English | ็ฎไฝไธญๆ