This repository was archived by the owner on Apr 12, 2022. It is now read-only.
forked from fuentesdt/livermask
-
Notifications
You must be signed in to change notification settings - Fork 0
gpauloski/livermask
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Horovod Usage ============= Horovod automatically find available workers and allocates batches to workers accordingly. If on TACC, use `ibrun python3 ./liver.py [options]` to use all currently allocated nodes. Usage ===== python liver.py --builddb python liver.py --trainmodel --idfold=0 --kfolds=1 python liver.py --trainmodel --idfold=0 --kfolds=5 python liver.py --trainmodel --idfold=1 --kfolds=5 python liver.py --trainmodel --idfold=2 --kfolds=5 python liver.py --trainmodel --idfold=3 --kfolds=5 python liver.py --trainmodel --idfold=4 --kfolds=5 python liver.py --predictimage=UID/image.nii.gz --predictmodel=UID/tumormodelunet.json --segmentation=UID/label.nii.gz Unet code adapted from SPIE Tutorial ==================================== https://spie.org/education/courses/coursedetail/SC1235?f=InCompany Training data from MICCAI Challenge ==================================== https://competitions.codalab.org/competitions/17094 Run on KNL at TACC ==================================== https://arxiv.org/abs/1709.05011 Example Performance, 256x256 input images ================== batch size = 30, tensor input (30,256,256,3) on KNL takes ~2hr per epoch on training set of 17277 [0] 17277/17277 [==============================] - 7496s 434ms/step - loss: -0.6887 - dice_metric_zero: 0.9951 - dice_metric_one: 0.9046 - dice_metric_two: 0.1663 - val_loss: -0.7076 - val_dice_metric_zero: 0.9965 - val_dice_metric_one: 0.9274 - val_dice_metric_two: 0.1989 Example Performance, 128x128 input images ================== batch size = 10, tensor input (10,128,128,4) on Titan card (2400 cuda cores, 6GB RAM) takes 47s per epoch on training set of 1700 1700/1700 [==============================] - 47s 27ms/step - loss: -0.6923 - val_loss: -0.6116 batch size = 200, tensor input (200,128,128,4) on KNL takes 102s per epoch on same training set of 1700 [0] 1700/1700 [==============================] - 102s 60ms/step - loss: -0.8135 - val_loss: -0.7408 %CPU spikes up > %8000 on large batches Tasks: 2530 total, 1 running, 2529 sleeping, 0 stopped, 0 zombie %Cpu(s): 20.1 us, 0.6 sy, 0.0 ni, 79.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 98693968 total, 52962568 free, 39903952 used, 5827448 buff/cache KiB Swap: 0 total, 0 free, 0 used. 51370748 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 62860 fuentes 20 0 53.499g 0.035t 24940 S 8384 37.6 18671:58 python3
About
No description, website, or topics provided.
Resources
Code of conduct
Contributing
Security policy
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 73.2%
- Shell 26.8%