Skip to content
This repository was archived by the owner on Apr 12, 2022. It is now read-only.

gpauloski/livermask

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
Horovod Usage
=============

Horovod automatically find available workers and allocates batches to workers accordingly.
If on TACC, use `ibrun python3 ./liver.py [options]` to use all currently allocated nodes.



Usage
=====
python liver.py --builddb
python liver.py --trainmodel --idfold=0 --kfolds=1
python liver.py --trainmodel --idfold=0 --kfolds=5
python liver.py --trainmodel --idfold=1 --kfolds=5
python liver.py --trainmodel --idfold=2 --kfolds=5
python liver.py --trainmodel --idfold=3 --kfolds=5
python liver.py --trainmodel --idfold=4 --kfolds=5
python liver.py --predictimage=UID/image.nii.gz --predictmodel=UID/tumormodelunet.json --segmentation=UID/label.nii.gz

Unet code adapted from SPIE Tutorial
====================================
https://spie.org/education/courses/coursedetail/SC1235?f=InCompany

Training data from MICCAI Challenge
====================================
https://competitions.codalab.org/competitions/17094

Run on KNL at TACC
====================================
https://arxiv.org/abs/1709.05011


Example Performance, 256x256 input images
==================
batch size = 30, tensor input (30,256,256,3) on KNL takes ~2hr  per epoch on training set of 17277

[0] 17277/17277 [==============================] - 7496s 434ms/step - loss: -0.6887 - dice_metric_zero: 0.9951 - dice_metric_one: 0.9046 - dice_metric_two: 0.1663 - val_loss: -0.7076 - val_dice_metric_zero: 0.9965 - val_dice_metric_one: 0.9274 - val_dice_metric_two: 0.1989


Example Performance, 128x128 input images
==================
batch size = 10, tensor input (10,128,128,4) on Titan card (2400 cuda cores, 6GB RAM) takes 47s per epoch on training set of 1700 

1700/1700 [==============================] - 47s 27ms/step - loss: -0.6923 - val_loss: -0.6116


batch size = 200, tensor input (200,128,128,4) on KNL takes 102s per epoch on same training set of 1700

[0] 1700/1700 [==============================] - 102s 60ms/step - loss: -0.8135 - val_loss: -0.7408


%CPU spikes up > %8000  on large batches

Tasks: 2530 total,   1 running, 2529 sleeping,   0 stopped,   0 zombie
%Cpu(s): 20.1 us,  0.6 sy,  0.0 ni, 79.3 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem : 98693968 total, 52962568 free, 39903952 used,  5827448 buff/cache
KiB Swap:        0 total,        0 free,        0 used. 51370748 avail Mem 

   PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND                                                                                                                                     
 62860 fuentes   20   0 53.499g 0.035t  24940 S  8384 37.6  18671:58 python3                                                                                                                                     

About

No description, website, or topics provided.

Resources

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 73.2%
  • Shell 26.8%