Skip to content

iwanggp/keras-applications

 
 

Repository files navigation

Keras Applications

Build Status

Keras Applications is the applications module of the Keras deep learning library. It provides model definitions and pre-trained weights for a number of popular archictures, such as VGG16, ResNet50, Xception, MobileNet, and more.

Read the documentation at: https://keras.io/applications/

Keras Applications may be imported directly from an up-to-date installation of Keras:

from keras import applications

Keras Applications is compatible with Python 2.7-3.6 and is distributed under the MIT license.

Performances

  • The top-k errors were obtained using by Keras Applications with TensorFlow backend on ImageNet validation set and may slightly differ from the original ones. The crop size is 224x224 for all but 331x331 for NASNetLarge, 299x299 for InceptionV3, InceptionResNetV2, Xception.
    • Top-1: single center crop, top-1 error
    • Top-5: single center crop, top-5 error
    • 10-5: ten crops (1 center + 4 corners and those mirrored ones), top-5 error
    • Size: rounded the number of parameters when include_top=True
    • Stem: rounded the number of parameters when include_top=False
Top-1 Top-5 10-5 Size Stem References
VGG16 28.732 9.950 8.834 138.4M 14.7M [paper] [tf-models]
VGG19 28.744 10.012 8.774 143.7M 20.0M [paper] [tf-models]
ResNet50 25.296 7.980 6.852 25.6M 23.6M [paper] [tf-models]
InceptionV3 22.102 6.280 5.038 23.9M 21.8M [paper] [tf-models]
InceptionResNetV2 19.744 4.748 3.962 55.9M 54.3M [paper] [tf-models]
Xception 20.994 5.548 4.738 22.9M 20.9M [paper]
MobileNet(alpha=0.25) 60.180 35.388 30.442 0.5M 0.2M [paper] [tf-models]
MobileNet(alpha=0.50) 43.144 19.986 16.416 1.3M 0.8M [paper] [tf-models]
MobileNet(alpha=0.75) 38.404 16.752 13.586 2.6M 1.8M [paper] [tf-models]
MobileNet(alpha=1.0) 34.180 13.858 10.798 4.3M 3.2M [paper] [tf-models]
MobileNetV2(alpha=0.35) 39.914 17.568 15.422 1.7M 0.4M [paper] [tf-models]
MobileNetV2(alpha=0.50) 34.806 13.938 11.976 2.0M 0.7M [paper] [tf-models]
MobileNetV2(alpha=0.75) 30.468 10.824 9.188 2.7M 1.4M [paper] [tf-models]
MobileNetV2(alpha=1.0) 28.664 9.858 8.322 3.5M 2.3M [paper] [tf-models]
MobileNetV2(alpha=1.3) 25.320 7.878 6.728 5.4M 3.8M [paper] [tf-models]
MobileNetV2(alpha=1.4) 24.770 7.578 6.518 6.2M 4.4M [paper] [tf-models]
DenseNet121 25.480 8.022 6.842 8.1M 7.0M [paper] [torch]
DenseNet169 23.926 6.892 6.140 14.3M 12.6M [paper] [torch]
DenseNet201 22.936 6.542 5.724 20.2M 18.3M [paper] [torch]
NASNetLarge 17.502 3.996 3.412 93.5M 84.9M [paper] [tf-models]
NASNetMobile 25.634 8.146 6.758 7.7M 4.3M [paper] [tf-models]

Reference implementations on community

Object detection and segmentation

Sequence learning

Reinforcement learning

Generative adversarial networks

About

Reference implementations of popular deep learning models.

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%