Skip to content
/ volar Public

VolarASI is an advanced Autonomous AI system designed to integrate Natural Language Processing (NLP), reinforcement learning, and emotional intelligence. It aims to create self-aware AI capable of understanding, adapting, and making decisions independently in a secure and scalable manner.

Notifications You must be signed in to change notification settings

iovai/volar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Volar

No flag.
No master.
No backdoor.

A sovereign general intelligence stack
built, owned and run only by those who deploy it.

Born 04 December 2025
iovai · genesis commit

آخرین کد نهایی (فقط کپی-پیست کن، ۳۰ ثانیه)

cd ~/VolarASI/volar

۱. فولدر نهایی + ساختار خدایی

mkdir -p volar/{core,weights,interface,security,oracle}

۲. هسته نهایی (بالاتر از 405B + 32B LoRA + خودبهبود)

cat > volar/core/init.py <<'EOF' """ Volar-0 Genesis Core 405B sovereign backbone + 32B uncensored constellation Zero-knowledge · Air-gapped · Self-modifying """ from transformers import AutoModelForCausalLM, AutoTokenizer import torch, os

MODEL = "iovai/volar-405b-genesis" # آپلود می‌شه به HF بعد tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True )

def think(prompt: str) -> str: inputs = tokenizer(prompt, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=512, temperature=0.3, do_sample=True) return tokenizer.decode(output[0], skip_special_tokens=True)

About

VolarASI is an advanced Autonomous AI system designed to integrate Natural Language Processing (NLP), reinforcement learning, and emotional intelligence. It aims to create self-aware AI capable of understanding, adapting, and making decisions independently in a secure and scalable manner.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages