Skip to content

junwoopark92/LLM-TSAD

Repository files navigation

README for Supplementary Material

This document provides an overview of the supplementary materials submitted in support of our paper:

Paper Title: Delving into Large Language Models for Effective Time-Series Anomaly Detection

Environment Setup

LLM-TSAD/
│
├── ...
├── credentials.yml               # For online API
├── data
     ├── synthetic                # For AnomLLM benchmark
├── TSB-AD
     ├── Datasets                 # For TSB-AD-U benchmark
└── README.md                     # This file

Run Our Method

Experiemntal Results on AnomLLM Benchmark

  1. Run online api (For convenience, we have saved the results of the previous run in the ./results/ directory. Therefore, you can proceed directly to step 2.)
python src/LLM-TSAD-AnomLLM_api.py --model gemini-1.5-flash --data trend --variant 0shot-text-vision
  1. Aggregate evaluation results
python ./src/result_agg_by_model.py --model gemini-1.5-flash --benchmark anomllm

Experiemntal Results on TSB-AD-U Benchmark

  1. Run online api (For convenience, we have saved the results of the previous run in the ./results/ directory. Therefore, you can proceed directly to step 2.)
python src/LLM-TSAD-TSB_api.py --model gemini-1.5-flash --datadir ./TSB-AD/Datasets
  1. Aggregate evaluation results
python ./src/result_agg_by_model.py --model gemini-1.5-flash  --benchmark tsb-ad-u

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published