This document provides an overview of the supplementary materials submitted in support of our paper:
Paper Title: Delving into Large Language Models for Effective Time-Series Anomaly Detection
-
This repository is built upon AnomLLM, and therefore must be set up using the AnomLLM environment.
Please follow the installation instructions provided in the AnomLLM repository before proceeding. -
Dataset Download
- AnomLLM: Downloaad "anomllm.zip" in the provied link in README of https://github.com/rose-stl-lab/anomllm
- TSB-AD-U: Download "Datasets" directory in https://github.com/TheDatumOrg/TSB-AD/tree/main/Datasets
-
For Qwen and InternVL models, we use LMDeploy.
-
File Structure
LLM-TSAD/
│
├── ...
├── credentials.yml # For online API
├── data
├── synthetic # For AnomLLM benchmark
├── TSB-AD
├── Datasets # For TSB-AD-U benchmark
└── README.md # This file
- Run online api (For convenience, we have saved the results of the previous run in the ./results/ directory. Therefore, you can proceed directly to step 2.)
python src/LLM-TSAD-AnomLLM_api.py --model gemini-1.5-flash --data trend --variant 0shot-text-vision
- Aggregate evaluation results
python ./src/result_agg_by_model.py --model gemini-1.5-flash --benchmark anomllm
- Run online api (For convenience, we have saved the results of the previous run in the ./results/ directory. Therefore, you can proceed directly to step 2.)
python src/LLM-TSAD-TSB_api.py --model gemini-1.5-flash --datadir ./TSB-AD/Datasets
- Aggregate evaluation results
python ./src/result_agg_by_model.py --model gemini-1.5-flash --benchmark tsb-ad-u