逻辑较为简单,请参考教程。有问题可以联系我~
Welcome to the Computer Vision Benchmark Hub — a flexible and user-friendly tool designed to evaluate and benchmark image-based models. With support for key metrics such as SSIM, PSNR, CLIP-Score, and more, our platform enables seamless one-click evaluations, helping you compare and optimize model performance effortlessly.
To get started, simply install the required dependencies:
conda create -n cv_benchmark python==3.10
conda activate cv_benchmark
pip install -r requirments.txtThe toolkit supports two types of inputs: folders and JSON files.
Ensure your input folder is organized as follows:
input_path
├── input_dir1
│ ├── dir1
│ │ ├── img1.jpg # all the filename must match in each dir
│ │ ├── img2.jpg
│ │ └── ...
│ └── dir2
│ ├── img1.jpg
│ ├── img2.jpg
│ └── ...
│
├── input_dir2
│ ├── dir1
│ └── ...
│ └── dir2
│ └── ...
...Alternatively, you can use a JSON file structured like this:
[
{
"args1": "image path or text of target",
"args2": "image path or text of pred",
},
{
...
},
{
"args1": "image path or text of target",
"args2": "image path or text of pred",
}
]The toolkit uses a YAML configuration file for customization.
path_key: Filters files containing specific keywords in their names within the --input_path directory.
special_input_paths: A list of paths that require special processing.
Define the input keys corresponding to your JSON or folder structure:
keys:
pred_key: args1
target_key: args2Run the benchmark using the following command:
python benchmark.py --config config/example.yaml --input_path example_data --output_path ./result/The result will be saved in ./result/test1 folder. There will be a 'benchmark.xlsx' file.
Completed
-
Support Diffusion Metric:SSIM, PSNR, CLIP-Score, LIPIS
-
generate latex
-
L1, L2...
-
Upcoming Features
Feel free to tweak the config and data formats to suit your needs. Happy benchmarking! 🎯