"Architecting the future of cloud-native applications with AI-powered development"
graph LR
A[Cloud Platforms<br/>95%] --> B[DevOps Tools<br/>90%]
B --> C[Programming<br/>88%]
C --> D[Databases<br/>85%]
D --> E[AI/ML<br/>80%]
E --> F[Monitoring<br/>92%]
F --> G[Security<br/>87%]
G --> H[Architecture<br/>93%]
H --> A
style A fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style B fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style C fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style D fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style E fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style F fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style G fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style H fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
pie title Technology Stack
"Cloud & DevOps" : 35
"Programming Languages" : 25
"Databases & Data" : 15
"AI & ML Tools" : 10
"Monitoring & Security" : 15
graph TB
subgraph "Cloud Layer"
A[AWS]
B[GCP]
end
subgraph "Infrastructure Layer"
C[Terraform]
D[Ansible]
end
subgraph "Containerization Layer"
E[Docker]
F[Kubernetes]
end
subgraph "CI/CD Layer"
G[Jenkins]
H[GitHub Actions]
end
subgraph "Application Layer"
I[Python]
J[JavaScript]
K[Java]
end
subgraph "Data Layer"
L[SQL]
M[NoSQL]
N[Redis]
end
subgraph "Monitoring Layer"
O[Prometheus]
P[Grafana]
end
subgraph "AI Tools"
Q[Cursor]
R[OpenAI]
S[Copilot]
end
A --> C
B --> C
C --> E
D --> E
E --> G
F --> G
G --> I
H --> I
I --> L
J --> M
K --> N
L --> O
M --> O
N --> O
O --> P
Q --> I
R --> I
S --> I
P --> A
style A fill:#FF9900,stroke:#1D1D1F,stroke-width:1px
style B fill:#4285F4,stroke:#1D1D1F,stroke-width:1px
style C fill:#7B42BC,stroke:#1D1D1F,stroke-width:1px
style D fill:#EE0000,stroke:#1D1D1F,stroke-width:1px
style E fill:#2496ED,stroke:#1D1D1F,stroke-width:1px
style F fill:#326CE5,stroke:#1D1D1F,stroke-width:1px
style G fill:#D24939,stroke:#1D1D1F,stroke-width:1px
style H fill:#2088FF,stroke:#1D1D1F,stroke-width:1px
style I fill:#3776AB,stroke:#1D1D1F,stroke-width:1px
style J fill:#F7DF1E,stroke:#1D1D1F,stroke-width:1px
style K fill:#ED8B00,stroke:#1D1D1F,stroke-width:1px
style L fill:#4479A1,stroke:#1D1D1F,stroke-width:1px
style M fill:#4EA94B,stroke:#1D1D1F,stroke-width:1px
style N fill:#DC382D,stroke:#1D1D1F,stroke-width:1px
style O fill:#E6522C,stroke:#1D1D1F,stroke-width:1px
style P fill:#F46800,stroke:#1D1D1F,stroke-width:1px
style Q fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
style R fill:#412991,stroke:#1D1D1F,stroke-width:1px
style S fill:#007AFF,stroke:#1D1D1F,stroke-width:1px
gantt
title Professional Experience
dateFormat YYYY-MM
axisFormat %Y
section 2020-2021
Junior Developer :2020-01, 2021-06
First Cloud Project :2020-06, 2021-12
section 2021-2022
Full Stack Developer :2021-07, 2022-06
DevOps Introduction :2021-10, 2022-12
section 2022-2023
DevOps Engineer :2022-07, 2023-06
Cloud Architecture :2022-10, 2023-12
section 2023-2024
Senior DevOps Engineer :2023-07, 2024-06
AI Integration :2023-10, 2024-12
section 2024-Present
Cloud Specialist :2024-01, 2025-06
Full Stack Architect :2024-07, 2025-12
| Category | Technologies | Proficiency |
|---|---|---|
| Cloud Platforms | AWS, GCP, Azure | ⭐⭐⭐⭐⭐ |
| Containerization | Docker, Kubernetes | ⭐⭐⭐⭐⭐ |
| Infrastructure as Code | Terraform, Ansible | ⭐⭐⭐⭐⭐ |
| Monitoring | Prometheus, Grafana | ⭐⭐⭐⭐⭐ |
| CI/CD | Jenkins, GitHub Actions | ⭐⭐⭐⭐⭐ |
| Programming | Python, JavaScript, Java | ⭐⭐⭐⭐⭐ |
| Databases | SQL, NoSQL, Redis | ⭐⭐⭐⭐⭐ |
| AI/ML | TensorFlow, OpenAI, Copilot | ⭐⭐⭐⭐ |
| DevOps | Linux, Bash, Git | ⭐⭐⭐⭐⭐ |
- Infrastructure Automation with Terraform and Ansible
- Container Orchestration with Kubernetes and Docker
- Cloud-Native Development on AWS and GCP
- CI/CD Pipeline Design and implementation
- Monitoring and Observability with Prometheus/Grafana
- AI-Powered Development with modern LLMs
- Full-Stack Application Architecture
- Database Design and Optimization
| Project | Description | Tech Stack | Status |
|---|---|---|---|
| myfirstsocialmediaapp | AI-Enhanced Social Platform | Next.js, TypeScript, Firebase | 🟢 Live |
| Website-News-Article-Scraper | Automated Content Extraction | Python, Web Scraping | 🟡 Active |
| dash-vanguard-report | Financial Analytics Dashboard | Python, Dash | 🟢 Live |
| GIS | Geographic Information System | Python, GIS | 🟡 Active |
| machine-learning-app | ML Application Framework | Python, ML | 🟡 Active |
| Metric | Target | Achievement |
|---|---|---|
| Code Quality | 95%+ | ✅ 98% |
| Test Coverage | 90%+ | ✅ 92% |
| Deployment Success | 99%+ | ✅ 99.8% |
| System Uptime | 99.9% | ✅ 99.95% |
| Response Time | <200ms | ✅ 150ms |
| Security Score | A+ | ✅ A+ |
graph TB
A[Code Commit] --> B[CI/CD Pipeline]
B --> C[Automated Testing]
C --> D[Security Scan]
D --> E[Container Build]
E --> F[Deploy to Staging]
F --> G[Integration Tests]
G --> H[Deploy to Production]
H --> I[Monitoring & Alerting]
I --> J[Performance Metrics]
J --> K[User Feedback]
K --> A
- AI-Assisted Planning - Leveraging LLMs for architecture decisions
- Rapid Prototyping - Quick iterations with AI code generation
- Infrastructure as Code - Automated environment provisioning
- Automated Testing - AI-powered test case generation
- CI/CD Deployment - Seamless production releases
- Continuous Monitoring - Real-time performance tracking
- Cloud-Native Architecture design and implementation
- AI/ML Integration in production systems
- DevOps Automation and infrastructure optimization
- Full-Stack Development with modern frameworks
- Performance Engineering and scalability solutions