Skip to content

kaniagalih/machine_translation

Repository files navigation

Javanese to Indonesian Machine Translation

This project implements a machine translation model that translates text from Javanese to Indonesian using Bidirectional Long Short-Term Memory (Bi-LSTM) networks with an attention mechanism. The model is designed to handle the unique linguistic features of both languages, providing accurate translations.

Installation

  1. Clone the Repository

    git clone https://github.com/kaniagalih/machine_translation.git
  2. Create a Virtual Environment

    python3 -m venv mt_venv #on windows & linux 
    conda env create --prefix ./mt_venv --file requirements.yaml #using conda env 
  3. Activate the Virtual Environment

    mt_venv/Scripts/activate #on windows
    conda activate ./mt_venv #using conda
    source .mt_venv/bin/activate #on linux 
  4. Install the Required Packages

    pip install -r requirements.txt
  5. Deactive Environment

    conda deactivate #conda 
    deactivate #windows & linux 

Running the Application

Option 1: Run Using Streamlit

Run the application using Streamlit:

```bash
streamlit run app/dev/app.py
```

Option 2: Run Using Docker

If you'd like to deploy the application using Docker, follow these steps:

  1. Build the Docker Image

    docker build -t java-translator . | docker-compose up -d 
  2. Run the Docker Container

    docker run -d -p 8501:8501 java-translator | if you do "docker-compose up -d" you don't need to run this command 
  3. Access the Application After running the container, open your browser and go to the following URL:

    http://localhost:8501/
  4. Stop the Docker

    docker stop | docker-compose down

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •