This project implements a machine translation model that translates text from Javanese to Indonesian using Bidirectional Long Short-Term Memory (Bi-LSTM) networks with an attention mechanism. The model is designed to handle the unique linguistic features of both languages, providing accurate translations.
-
Clone the Repository
git clone https://github.com/kaniagalih/machine_translation.git
-
Create a Virtual Environment
python3 -m venv mt_venv #on windows & linux conda env create --prefix ./mt_venv --file requirements.yaml #using conda env
-
Activate the Virtual Environment
mt_venv/Scripts/activate #on windows conda activate ./mt_venv #using conda source .mt_venv/bin/activate #on linux
-
Install the Required Packages
pip install -r requirements.txt
-
Deactive Environment
conda deactivate #conda deactivate #windows & linux
Run the application using Streamlit:
```bash
streamlit run app/dev/app.py
```
If you'd like to deploy the application using Docker, follow these steps:
-
Build the Docker Image
docker build -t java-translator . | docker-compose up -d
-
Run the Docker Container
docker run -d -p 8501:8501 java-translator | if you do "docker-compose up -d" you don't need to run this command
-
Access the Application After running the container, open your browser and go to the following URL:
http://localhost:8501/
-
Stop the Docker
docker stop | docker-compose down