coming soon, this is a work in progress, please don't post issues
This book depends on the following open-source Python packages
which in turn have dependencies on other packages created by the author and third parties.
This package provides a simple one-step installation of the required Toolboxes
pip install rvc3pythonor
conda install rvc3pythonIt's probably a good idea to create a virtual environment to keep this package and its dependencies separated from your other Python code and projects. This is really easy using Conda conda, and only adds a couple of extra lines
conda create -n RVC3 python=3.10
conda activate RVC3
pip install rvc3pythonChapter 11 has some deep learning examples based on PyTorch. If you don't have
PyTorch installed you can use the pytorch install option
pip install rvc3python[pytorch]or
conda install rvc3python[pytorch]The simplest way to get going is to use the command line tool
$ rvctool
____ _ _ _ __ ___ _ ___ ____ _ _ _____
| _ \ ___ | |__ ___ | |_(_) ___ ___ \ \ / (_)___(_) ___ _ __ ( _ ) / ___|___ _ __ | |_ _ __ ___ | | |___ /
| |_) / _ \| '_ \ / _ \| __| |/ __/ __| \ \ / /| / __| |/ _ \| '_ \ / _ \/\ | | / _ \| '_ \| __| '__/ _ \| | |_ \
| _ < (_) | |_) | (_) | |_| | (__\__ \_ \ V / | \__ \ | (_) | | | | | (_> < | |__| (_) | | | | |_| | | (_) | | ___) |
|_| \_\___/|_.__/ \___/ \__|_|\___|___( ) \_/ |_|___/_|\___/|_| |_| \___/\/ \____\___/|_| |_|\__|_| \___/|_| |____/
|/
for Python (RTB==1.0.2, MVTB==0.9.1, SMTB==1.0.0)
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from math import pi
from spatialmath import *
from spatialmath.base import *
from roboticstoolbox import *
from machinevisiontoolbox import *
import machinevisiontoolbox.base as mvbase
func/object? - show brief help
help(func/object) - show detailed help
func/object?? - show source code
Results of assignments will be displayed, use trailing ; to suppress
Python 3.8.5 (default, Sep 4 2020, 02:22:02)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.0.1 -- An enhanced Interactive Python. Type '?' for help.
>>> This provides an interactive Python (IPython) session with all the Toolboxes preloaded, and ready to go. It's a highly capable, convenient, and "MATLAB-like" workbench environment for robotics and computer vision.
For example to load an ETS model of a Panda robot, solve a forward kinematics and inverse kinematics problem, and an interactive graphical display is simply:
>>> panda = models.ETS.Panda()
ERobot: Panda (by Franka Emika), 7 joints (RRRRRRR)
┌─────┬───────┬───────┬────────┬─────────────────────────────────────────────┐
│link │ link │ joint │ parent │ ETS: parent to link │
├─────┼───────┼───────┼────────┼─────────────────────────────────────────────┤
│ 0 │ link0 │ 0 │ BASE │ tz(0.333) ⊕ Rz(q0) │
│ 1 │ link1 │ 1 │ link0 │ Rx(-90°) ⊕ Rz(q1) │
│ 2 │ link2 │ 2 │ link1 │ Rx(90°) ⊕ tz(0.316) ⊕ Rz(q2) │
│ 3 │ link3 │ 3 │ link2 │ tx(0.0825) ⊕ Rx(90°) ⊕ Rz(q3) │
│ 4 │ link4 │ 4 │ link3 │ tx(-0.0825) ⊕ Rx(-90°) ⊕ tz(0.384) ⊕ Rz(q4) │
│ 5 │ link5 │ 5 │ link4 │ Rx(90°) ⊕ Rz(q5) │
│ 6 │ link6 │ 6 │ link5 │ tx(0.088) ⊕ Rx(90°) ⊕ tz(0.107) ⊕ Rz(q6) │
│ 7 │ @ee │ │ link6 │ tz(0.103) ⊕ Rz(-45°) │
└─────┴───────┴───────┴────────┴─────────────────────────────────────────────┘
┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐
│name │ q0 │ q1 │ q2 │ q3 │ q4 │ q5 │ q6 │
├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤
│ qr │ 0° │ -17.2° │ 0° │ -126° │ 0° │ 115° │ 45° │
│ qz │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │
└─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘
>>> panda.fkine(panda.qz)
0.7071 0.7071 0 0.088
0.7071 -0.7071 0 0
0 0 -1 0.823
0 0 0 1
>>> panda.ikine_LM(SE3.Trans(0.4, 0.5, 0.2) * SE3.Ry(pi/2))
IKSolution(q=array([ -1.849, -2.576, -2.914, 1.22, -1.587, 2.056, -1.013]), success=True, iterations=13, searches=1, residual=3.3549072615799585e-10, reason='Success')
>>> panda.teach(panda.qz)Computer vision is just as easy. For example, we can import an image, blur it and display it alongside the original
>>> mona = Image.Read("monalisa.png")
>>> Image.Hstack([mona, mona.smooth(sigma=5)]).disp()or load two images of the same scene, compute SIFT features and display putative matches
>>> sf1 = Image.Read("eiffel-1.png", mono=True).SIFT()
>>> sf2 = Image.Read("eiffel-2.png", mono=True).SIFT()
>>> matches = sf1.match(sf2)
>>> matches.subset(100).plot("w")rvctool is a wrapper around
IPython where:
- functions and classes can be accessed without needing package prefixes
- results are displayed by default like MATLAB does, and like MATLAB you need to put a semicolon on the end of the line to prevent this
- the prompt is the standard Python REPL prompt
>>>rather than the IPython prompt, this can be overridden by a command-line switch - allows cutting and pasting in lines from the book, and prompt characters are ignored
The Robotics, Vision & Control book uses rvctool for all the included
examples.
rvctool imports the all the above mentioned packages using import * which is
not considered best Python practice. It is very convenient for interactive
experimentation, but in your own code you can control the imports as you see
fit.
This package provides additional command line tools including:
eigdemo, animation showing linear transformation of a rotating unit vector which demonstrates eigenvalues and eigenvectors.tripleangledemo, experiment with various triple-angle sequences.twistdemo, experiment with 3D twists.
Block diagram models are key to the pedagogy of the RVC3 book and 25 models are included. To simulate these models we use the Python package bdsim which can run models:
- written in Python using bdsim blocks and wiring.
- created graphically using
bdedit
and saved as a
.bd(JSON format) file.
The models are included in the RVC3 package when it is installed and rvctool
adds them to the module search path. This means you can invoke them from
rvctool by
>>> %run -m vloop_testIf you want to directly access the folder containing the models, the command line tool
bdsim_pathwill display the full path to where they have been installed in the Python package tree.
This GitHub repo provides additional resources for readers including:
- Jupyter notebooks containing all code lines from each chapter, see
the
notebooksfolder - The code to produce every Python/Matplotlib (2D) figure in the book, see the
figuresfolder - 3D points clouds from chapter 14, and the code to create them, see
the
pointcloudsfolder. - 3D figures from chapters 2-3, 7-9, and the code to create them, see the
3dfiguresfolder. - All example scripts, see the
examplesfolder. - To run the visual odometry example in Sect. 14.8.3 you need to download two image sequence, each over 100MB, see the instructions here.
To get this material you must clone the repo
git clone https://github.com/petercorke/RVC3-python.git