You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Code for "Distributionally Robust Deep Q-learning"
Chung I Lu, Julian Sester, Aijia Zhang
Abstract
We propose a novel distributionally robust $Q$-learning algorithm for the non-tabular case accounting for continuous state spaces where the state transition of the underlying Markov decision process is subject to model uncertainty. The uncertainty is taken into account by considering the worst-case transition from a ball around a reference probability measure. To determine the optimal policy under the worst-case state transition, we solve the associated non-linear Bellman equation by dualising and regularising the Bellman operator with the Sinkhorn distance, which is then parameterized with deep neural networks. This approach allows us to modify the Deep Q-Network algorithm to optimise for the worst case state transition.
Preprint
TBD
Contents
gambling_env is the notebook for the experiments on gambling on the unit square
mmd_simulator_env is the notebook for the experiments on portfolio optimisation using the simulator from here