Skip to content

lucidrains/locoformer

Repository files navigation

LocoFormer (wip)

LocoFormer - Generalist Locomotion via Long-Context Adaptation

The gist is they trained a simple Transformer-XL in simulation on robots with many different bodies (cross-embodiment) and extreme domain randomization. When transferring to the real-world, they noticed the robot now gains the ability to adapt to insults. The XL memories span across multiple trials, which allowed the robot to learn in-context adaptation.

Sponsors

This open sourced work is sponsored by Safe Sentinel

Citations

@article{liu2025locoformer,
    title   = {LocoFormer: Generalist Locomotion via Long-Context Adaptation},
    author  = {Liu, Min and Pathak, Deepak and Agarwal, Ananye},
    journal = {Conference on Robot Learning ({CoRL})},
    year    = {2025}
}
@inproceedings{anonymous2025flow,
    title   = {Flow Policy Gradients for Legged Robots},
    author  = {Anonymous},
    booktitle = {Submitted to The Fourteenth International Conference on Learning Representations},
    year    = {2025},
    url     = {https://openreview.net/forum?id=BA6n0nmagi},
    note    = {under review}
}
@misc{ashlag2025stateentropyregularizationrobust,
    title   = {State Entropy Regularization for Robust Reinforcement Learning}, 
    author  = {Yonatan Ashlag and Uri Koren and Mirco Mutti and Esther Derman and Pierre-Luc Bacon and Shie Mannor},
    year    = {2025},
    eprint  = {2506.07085},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG},
    url     = {https://arxiv.org/abs/2506.07085}, 
}