Releases: lightly-ai/lightly
Releases · lightly-ai/lightly
Implement iBOT
What's Changed
- Speed up function
_same_maskin DetConBLoss by 25% by @misrasaurabh1 in #1847 - Fix DINOv2 Bugs
- Add DINOv2 to Docs with Example
- Fix: vicregl_loss tensor RuntimeError by @RDR2Blackwater in #1850
- Add iBOTTransform
- Add iBOT Implementation
- Add iBOT to Docs with Example
- Fix KNN dtype for ResNet benchmark
- Fix CUDA Tests for Losses
- Fix OnlineClassifier Issues
- Support Tensor Input for GaussianBlur
- Use ToTensor Helper Function by @ajtritt in #1862
- Move Rotation After Flip for Transforms by @KylevdLangemheen in #1865
- Improve pre-commit hooks for Dev Env
- Add iBOT Benchmarks
New Contributors
- @misrasaurabh1 made their first contribution in #1847
- @RDR2Blackwater made their first contribution in #1850
- @ajtritt made their first contribution in #1862
- @KylevdLangemheen made their first contribution in #1865
Full Changelog: v1.15.21...v1.15.22
Many thanks to our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- DINOv2: Learning Robust Visual Features without Supervision, 2023
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- iBOT: Image BERT Pre-Training with Online Tokenizer, 2021
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Implement DINOv2
What's Changed
- Add DINOv2 ViT benchmark Implementation
- Add Paper Joint-Embedding vs Reconstruction: Provable Benefits of Latent Space Prediction for Self-Supervised Learning, 2025 by Meta to "Lightly in Research". Thank them for the credit!
- Add
seed_everythingfor reproducibility in benchmarks by @yvesyue in #1819 - Fix MyPy type-checking issues for newer versions of NumPy by @yvesyue in #1820
- Fix DCLLoss negative-term aggregation and add loop-based reference test by @yvesyue in #1827
- Fix bugs in KNN benchmark evaluation
- Fix bugs in cosine scheduler warmup epochs
- Fix
MaskedCausalBlock.__init__() got an unexpected keyword argument 'proj_bias'due to interface change in the newer TIMM versions - Fix
AddGridTransformdue to interface change in the newer Torchvision versions - Fix
format&format-checkto only target python directories - Remove video download functions
- Remove unused download functions & add typing
New Contributors
- @yvesyue made their first contribution in #1819
Full Changelog: v1.5.20...v1.15.21
Many thanks to our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- DINOv2: Learning Robust Visual Features without Supervision, 2023
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
New DINO ViT Benchmark and BTLoss
Changes
- Added DINO ViT Benchmark
- Fixed BTLoss: ensure invariance to affine transformations by @adosar in #1806
- Tested BTLoss: use default values for
torch.allcloseby @adosar in #1810 - Added more detailed docstring to knn predict by @maxprogrammer007 in #1812
- Removed
verboseinCosineWarmUpScheduler - Add LightlyTrain Reference
- Renamed
lightly-traincommand tolightly-ssl-train
Many thanks to our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
New MACL loss and updated model docs
Changes
- Docs: Fix mismatch between forward method and docstring of
NTXentLossby @adosar in #1789 - Update NNCLR model examples in docs
- Updated the BYOL model examples in docs
- Updated the DINO model examples in docs
- Update the SimSiam model examples in docs
- Additional tests added to pooling operation for DetCon
- Fix issues with the Lightning Trainer's strategy in the MAE examples and support new Lightning versions in the benchmarks
- Added loss function for MACL (Model-Aware Contrastive Learning)
- Updated CONTRIBUTING Guide and GitHub Actions
- Fix multiple issues with loss tests
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Update SimCLR and MAE model docs
Changes
- Update SimCLR model model example
- Update MAE model docs
- adjust pagination to be defensive at 2500 entries
- Fix typo: Dict() instead of dict() return class instanciation error by @gatienc in #1785
Many thanks to all of our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Cleanup & DetCon loss fix
Changes
- fix detcon loss distributed issue
- remove heuristics in masked pooling
- fix torchvision dependency test
Many thanks to all of our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
DetCon and typings
Changes
- Added DetConSLoss and DetConBLoss
- removed opencv dependencies partial thanks to @vectorvp
- fix: IJEPA example by thanks to @vectorvp
Typing and Docs
- Many files are now properly typed and type-checked thanks to @philippmwirth
- We removed old and outdated documentation regarding the LightlyOne Worker
Many thanks to all of our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
More and better Transforms
Changes
New transforms
- Add PhaseShift Transform (#1714) by @pearguacamole
- Add FDATransform (#1734) by @vectorvp
Switch to version-independent torchvision transforms.
- If torchvision transforms v2 are available, they are used. Otherwise torchvision transforms v1 are used. For details see this comment.
- Add Transform for DetCon + MultiViewTransformV2 for torchvision.transforms.v2 (#1737)
Typing, naming & docstring improvements
- Type
data/_utils(#1740),data/_helpers(#1742) andtests/models(#1744) by @vectorvp - Cleanup: docstrings in the lightly/data subpackage (#1741) by @ChiragAgg5k
- Refactor: Update naming and remove unused package from AmplitudeRescaleTransform (#1732) by @vectorvp
Other
- Fix DINOProjectionHead BatchNorm Handling (#1729)
- Add masked average pooling for pooling with segmentation masks (DetCon)(#1739)
Many thanks to all of our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
More Transforms, Typing and Docs Improvements
Changes
New transforms
- Added RFFT2D and IRFFT2D transforms @snehilchatterjee
- Add RandomFrequencyMaskTransform @payo101
- Add GaussianMixtureMaskTransform @snehilchatterjee
- Add AmplitudeRescaleTransform @payo101
- Better support for both torchvision.transforms v1 and v2 without warnings/errors.
Added and updated docstrings
- Many improvements by @Prathamesh010, @ayush22iitbhu, @ChiragAgg5k @HarshitVashisht11
Docs improvements
- Improvements of the README.md @bhargavshirin and @kushal34712 @eltociear @Mefisto04 @ayush22iitbhu
- Improvements of other parts of the the docs and tutorials @jizhang02
- Fix examples on Windows @snehilchatterjee
- Improve CONTRIBUTING.md @Prathamesh010
- Added a back to top button for easier navigation @hackit-coder
More and better typing
- Testing typing for all python versions
- Typing of serve.py @ishaanagw
- Cleanup: _image.py and _utils.py file in data subpackage @ChiragAgg5k
Better formatting
- Move classes and public functions to top of file @fadkeabhi and @SauravMaheshkar
Other
Many thanks to all of our contributors!
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Support python 3.12
- Support python 3.12, thanks @MalteEbner
- update cosine warmup scheduler, thanks @guarin
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DenseCL: Dense Contrastive Learning for Self-Supervised Visual Pre-Training, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022