Lists (1)
Sort Name ascending (A-Z)
- All languages
- ANTLR
- AppleScript
- Assembly
- Batchfile
- C
- C#
- C++
- CMake
- CSS
- Clojure
- CoffeeScript
- Common Lisp
- Common Workflow Language
- Cython
- Dart
- Dockerfile
- Elm
- Emacs Lisp
- Fennel
- GAP
- Go
- Groff
- HTML
- Haskell
- Java
- JavaScript
- JetBrains MPS
- Jupyter Notebook
- Kotlin
- Lua
- MATLAB
- MDX
- Makefile
- Markdown
- Nix
- Nunjucks
- OCaml
- Objective-C
- PHP
- PLpgSQL
- Perl
- PlantUML
- Pug
- Python
- R
- Racket
- Reason
- Rez
- Rich Text Format
- Roff
- Ruby
- Rust
- SCSS
- Scala
- Scheme
- Shell
- Smarty
- Swift
- TSQL
- TeX
- TypeScript
- Vim Script
- Vim Snippet
- Vue
- XSLT
- YASnippet
- Yacc
Starred repositories
Python - 100天从新手到大师
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)
Python programs, usually short, of considerable difficulty, to perfect particular skills.
🤖 Python examples of popular machine learning algorithms with interactive Jupyter demos and math being explained
100-Days-Of-ML-Code中文版
AISystem 主要是指AI系统,包括AI芯片、AI编译器、AI推理和训练框架等AI全栈底层技术
wtfpython的中文翻译/持续🚧.../ 能力有限,欢迎帮我改进翻译
The "Python Machine Learning (1st edition)" book code repository and info resource
Practice your pandas skills!
Sample code for Channel 9 Python for Beginners course
Code samples used on cloud.google.com
AIInfra(AI 基础设施)指AI系统从底层芯片等硬件,到上层软件栈支持AI大模型训练和推理。
利用Python进行数据分析 第二版 (2017) 中文翻译笔记
A collection of tutorials and examples for solving and understanding machine learning and pattern classification tasks
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.
IPython Parallel: Interactive Parallel Computing in Python
An interactive data visualization tool which brings matplotlib graphics to the browser using D3.
Python code for YouTube videos.
Starter files for Pluralsight course: Understanding Machine Learning with Python
Machine learning with scikit-learn tutorial at PyData Chicago 2016