Skip to content

Powerful and user-friendly property graph generator that creates graphs with specified node and edge numbers, supporting multiple output formats and visualization

License

Notifications You must be signed in to change notification settings

lszeremeta/knows

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

72 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Knows logo

PyPI Docker Image Size (latest by date)

Knows is a powerful and user-friendly tool for generating property graphs. These graphs are crucial in many fields. Knows supports multiple output formats and basic visualization capabilities, making it a go-to tool for researchers, educators and data enthusiasts.

Key Features πŸš€

  • Customizable Graph Generation: Tailor your graphs by specifying the number of nodes and edges.
  • Diverse Output Formats: Export graphs in formats like GraphML, YARS-PG 5.0, CSV, Cypher, GEXF, GML, JSON, and others.
  • Flexible Output Options: Display results in the console, redirect them, or save them directly to a file.
  • Integrated Graph Visualization: Conveniently visualize your graphs in SVG, PNG, JPG, or PDF format.
  • Intuitive Command-Line Interface (CLI): A user-friendly CLI for streamlined graph generation and visualization.
  • Docker Compatibility: Deploy Knows in Docker containers for a consistent and isolated runtime environment.
  • Selectable Properties: Choose which node and edge properties should be generated.
  • Reproducible graphs: Ensure deterministic outputs by setting the -s/--seed option regardless of the selected output format.

Note on reproducibility: The -s/--seed option makes the random aspects of graph generation deterministic within the same software environment. Results may still differ across versions of Python or dependencies.

Graph Structure

  • Generates graphs with specified or random nodes and edges.
  • Creates directed graphs.
  • Nodes are labeled Person with unique IDs (N1, N2, N3, ..., Nn).
  • Nodes feature firstName and lastName properties by default.
  • Edges are labeled knows and include strength [1..100] and lastMeetingDate [1955-01-01..2025-06-28] properties by default.
  • Additional node properties:
    • favoriteColor
    • company
    • job
    • phoneNumber
    • postalAddress
    • friendCount [1..1000]
    • preferredContactMethod [inPerson, email, postalMail, phone, textMessage, videoCall, noPreference]
  • Additional edge properties:
    • lastMeetingCity
    • meetingCount [1..10000]
  • Edges have random nodes, avoiding cycles.
  • If edges connect the same nodes in both directions, the paired edges share lastMeetingCity, lastMeetingDate, and meetingCount values.

Installation πŸ› οΈ

You can install knows via PyPI, Docker or run it from the source code.

Install via PyPI

  1. Installation:

    pip install knows[draw]

    The draw installs a matplotlib and scipy libraries for graph visualization. You can omit the [draw] if you don't need visualization and svg output generation.

  2. Running Knows:

    knows [options]

Docker Deployment 🐳

From Docker Hub

  1. Pull Image:

    docker pull lszeremeta/knows
  2. Run Container:

    docker run --rm lszeremeta/knows [options]

Building from Source

  1. Build Image:

    docker build -t knows .
  2. Run Container:

    docker run --rm knows [options]

Python from Source

  1. Clone Repository:

    git clone git@github.com:lszeremeta/knows.git
    cd knows
  2. Install Requirements:

    pip install .[draw]
  3. Execute Knows:

    python -m knows [options]

Install Tkinter for Graph Visualization

The -d/--draw option requires Tkinter.

  • Ubuntu:

    sudo apt update
    sudo apt install python3-tk

    See Installing Tkinter on Ubuntu for details.

  • macOS (Homebrew):

    brew install python3
    brew install python-tk

    See Installing Tkinter on macOS for details.

  • Windows: On Windows, Tkinter should be installed by default with Python. No additional steps required.

Usage πŸ’‘

Basic Usage

knows [-h] [-n NODES] [-e EDGES] [-s SEED] [-v] [-f {yarspg,graphml,csv,cypher,gexf,gml,svg,png,jpg,pdf,adjacency_list,multiline_adjacency_list,edge_list,json}]
             [-np [{firstName,lastName,company,job,phoneNumber,favoriteColor,postalAddress,friendCount,preferredContactMethod} ...]]
             [-ep [{strength,lastMeetingCity,lastMeetingDate,meetingCount} ...]] [-ap] [-d]
             [output]

Available options may vary depending on the version. To display all available options with their descriptions use knows -h.

Positional arguments

  • output: Optional path to save the graph. For CSV format two files will be created: *_nodes.csv and *_edges.csv.

Options

  • -h, --help: Show this help message and exit.
  • -n NODES, --nodes NODES: Number of nodes in the graph. Selected randomly if not specified.
  • -e EDGES, --edges EDGES: Number of edges in the graph. Selected randomly if not specified.
  • -s SEED, --seed SEED: Seed for random number generation to ensure reproducible results (also between various output formats).
  • -v, --version: Show program version and exit.
  • -f {yarspg,graphml,csv,cypher,gexf,gml,svg,png,jpg,pdf,adjacency_list,multiline_adjacency_list,edge_list,json}, --format {yarspg,graphml,csv,cypher,gexf,gml,svg,png,jpg,pdf,adjacency_list,multiline_adjacency_list,edge_list,json}: Format to output the graph. Default: yarspg. The svg, png, jpg and pdf formats are for simple graph visualization.
  • -np [{firstName,lastName,company,job,phoneNumber,favoriteColor,postalAddress,friendCount,preferredContactMethod} ...], --node-props [{firstName,lastName,company,job,phoneNumber,favoriteColor,postalAddress,friendCount,preferredContactMethod} ...]:
    Space-separated node properties. Available: firstName, lastName, company, job, phoneNumber, favoriteColor, postalAddress, friendCount, preferredContactMethod.
  • -ep [{strength,lastMeetingCity,lastMeetingDate,meetingCount} ...],
    --edge-props [{strength,lastMeetingCity,lastMeetingDate,meetingCount} ...]:
    Space-separated edge properties. Available: strength, lastMeetingCity, lastMeetingDate, meetingCount.
  • -ap, --all-props: Use all available node and edge properties.
  • -d, --draw: Show simple image of the graph. Requires Tkinter. This option may not work in Docker. If you want to generate an image of the graph, use the svg, png, jpg, or pdf output format and save it to a file.

Practical Examples 🌟

  1. Create a random graph in YARS-PG 5.0 format and show it:
    knows
    # or
    docker run --rm lszeremeta/knows
  2. Create a 100-node, 70-edge graph in GraphML format:
    knows -n 100 -e 70 -f graphml > graph.graphml
    # or
    knows -n 100 -e 70 -f graphml graph.graphml
    # or
    docker run --rm lszeremeta/knows -n 100 -e 70 -f graphml > graph.graphml
    # or
    docker run --rm -v "$(pwd)":/data lszeremeta/knows -n 100 -e 70 -f graphml /data/graph.graphml
  3. Create a random graph in CSV format and save to files (nodes are written to standard output, edges to standard error):
    knows -f csv > nodes.csv 2> edges.csv
    # or
    knows -f csv graph.csv
    # or
    docker run --rm lszeremeta/knows -f csv > nodes.csv 2> edges.csv
    # or
    docker run --rm -v "$(pwd)":/data lszeremeta/knows -f csv /data/graph.csv
    The latter command creates graph_nodes.csv and graph_edges.csv.
  4. Create a 50-node, 20-edge graph in Cypher format:
    knows -n 50 -e 20 -f cypher > graph.cypher
    # or
    knows -n 50 -e 20 -f cypher graph.cypher
  5. Create a 100-node, 50-edge graph in YARS-PG format:
    knows -n 100 -e 50 > graph.yarspg
    # or
    knows -n 100 -e 50 graph.yarspg
  6. Create, save, and visualize a 100-node, 50-edge graph in SVG:
    knows -n 100 -e 50 -f svg -d > graph.svg
    # or
    knows -n 100 -e 50 -f svg -d graph.svg
  7. Create, save a 70-node, 50-edge graph in SVG:
    knows -n 70 -e 50 -f svg > graph.svg
    # or
    knows -n 70 -e 50 -f svg graph.svg
  8. Create, save a 10-node, 5-edge graph in PNG:
    knows -n 10 -e 5 -f png > graph.png
    # or
    knows -n 10 -e 5 -f png graph.png
  9. Create a graph in JSON format:
    knows -f json > graph.json
    # or
    knows -f json graph.json
  10. Create a graph with custom properties (20 nodes, 10 edges) and show it:
knows -n 20 -e 10 -np firstName favoriteColor job -ep lastMeetingCity
  1. Create a graph with all possible properties in YARS-PG format and save it to file:
knows -ap > graph.yarspg
# or
knows -ap graph.yarspg
  1. Generate a reproducible graph in CSV by setting a seed:
knows -n 3 -e 2 -s 43 -f csv

Running the command again with the same seed will produce the identical graph, provided the environment and dependencies remain unchanged.

  1. Generate the same graph as above but in YARS-PG format:
knows -n 3 -e 2 -s 43

Contribute to Knows πŸ‘₯

Your ideas and contributions can make Knows even better! If you're new to open source, read How to Contribute to Open Source and CONTRIBUTING.md.

License πŸ“œ

Knows is licensed under the MIT License.

About

Powerful and user-friendly property graph generator that creates graphs with specified node and edge numbers, supporting multiple output formats and visualization

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •