Skip to content

reichlab/cladetime

Repository files navigation

cladetime CI status

User Guide

Cladetime is a wrapper around Nextstrain's GenBank-based SARS-CoV-2 genome sequence data and the metadata that describes it. Included with the metadata are the clades (variants) that each sequence is assigned to.

An advanced feature of Cladetime is the ability to perform custom clade assignments using past reference trees. For example, you can use the current set of sequence data and assign clades to it using the reference tree as it existed three months ago.

Cladetime is designed for use with US-based sequences from Homo sapiens.

Installation

Cladetime is written in Python and can be installed using pip:

pip install cladetime

The CladeTime class

Most of Cladetime's features are accessible through the CladeTime class, which accepts two optional parameters:

  • sequence_as_of: access Nextstrain SARS-CoV-2 sequence data and metadata files as they existing on this date (defaults to the current UTC datetime)
  • tree_as_of: the date of the reference tree to use for clade assignments (defaults to sequence_as_of)

Important

Using tree_as_of for custom clade assignments is an advanced feature and requires Docker.

>>> from cladetime import CladeTime

# Create a CladeTime object that references the most recent available sequence
# data and metadata from Nextstrain
>>> ct = CladeTime()

Accessing sequence data

Each CladeTime object has a link to the full set of Nextstrain's SARS-Cov-2 genomic sequences as they existed on the sequence_as_of date. This data is in .fasta format, and most users won't need to download it directly.

>>> from cladetime import CladeTime
>>> ct = CladeTime()
>>> ct.url_sequence
https://nextstrain-data.s3.amazonaws.com/files/ncov/open/sequences.fasta.xz?versionId=4Sv2PbA1NoEd.V_LOOQSBPkqBpdoj7s_'

More interesting to most users will be the metadata that describes each sequence.

The sequence_metadata attribute of a CladeTime object is a Polars LazyFrame that points to a copy of Nextstrain's sequence metadata.

You can apply your own filters and transformations to the LazyFrame, but it's a good idea to start with the built-in filter_metadata function that removes non-US and non-human sequences from the metadata.

A collect() operation will return the filtered metadata as an in-memory Polars DataFrame.

>>> import polars as pl
>>> from cladetime import CladeTime, sequence

>>> ct = CladeTime()
>>> filtered_metadata = sequence.filter_metadata(ct.sequence_metadata)

# Alternately, specify a sequence collection date range to the filter
>>> filtered_metadata = sequence.filter_metadata(
>>>     ct.sequence_metadata,
>>>     collection_min_date = "2024-10-01",collection_max_date ="2024-10-31"
>>> )

>>> metadata_df = filtered_metadata.collect(streaming=True)

# Pandas users can export Polars dataframes
>>> pandas_df = filtered_sequence_metadata.to_pandas()

Past sequence data

Working with past sequence data and metadata is similar to the above examples. Just pass in a sequence_as_of date when creating a CladeTime object.

The clades returned as part of the metadata will reflect the reference tree in use when sequence metadata file was created.

>>> from cladetime import CladeTime

# Create a CladeTime object for recent historical data
>>> ct = CladeTime(sequence_as_of="2025-10-15")

Data Availability Constraints

Important

Historical data availability is limited due to Nextstrain's data retention policies:

  • Sequence data: Available from 2025-09-29 onwards (at least 90 days of history)
  • Reference tree metadata: Available from 2024-10-09 onwards (via variant-nowcast-hub archives)

Nextstrain implemented a ~7-week retention policy for S3 versioned objects in October 2025. Historical versions older than this window have been permanently deleted and cannot be accessed.

Note: These constraints may change as Nextstrain's infrastructure evolves. The current limitations reflect policies as of December 2025. See GitHub issue #185 for technical details and discussion of potential workarounds.

Attempting to use dates outside these availability windows will raise a CladeTimeDataUnavailableError:

>>> from cladetime import CladeTime
>>> ct = CladeTime(sequence_as_of="2024-10-30")  # Before 2025-09-29
CladeTimeDataUnavailableError: Sequence data is not available before 2025-09-29.
Nextstrain S3 only retains approximately 7 weeks of historical versions.

Custom clade assignments

You may want to assign sequence clades using a reference tree from a past date. This feature is helpful when creating "source of truth" data to evaluate models that predict clade proportions:

  • create a CladeTime object using the tree_as_of parameter
  • filter the sequence metadata to include only the sequences you want to assign
  • pass the filtered metadata to the assign_clades method

CladeTime's assign_clades method returns two Polars LazyFrames:

  • detail: a linefile of each sequence and its assigned clade
  • summary: clade counts summarized by country, location, date and host

Warning

In addition to requiring Docker, assign_clades is resource-intensive, because the process requires downloading a full copy of SARS-CoV-2 sequence data and then filtering it.

The filtered sequences are then run through Nextclade's CLI for clade assignment, another resource-intensive process. We recommend not assigning more than 30 days worth of sequence collections at a time.

>>> import polars as pl
>>> from cladetime import CladeTime, sequence

>>> ct = CladeTime(sequence_as_of="2024-11-15", tree_as_of="2024-09-01")
>>> filtered_metadata = sequence.filter_metadata(
>>>     ct.sequence_metadata,
>>>     collection_min_date = "2024-10-01",
>>>     collection_max_date ="2024-10-31"
>>> )
>>> clade_assignments = ct.assign_clades(filtered_metadata)

# Summarized clade assignments
>>> clade_assignments.summary.collect().head()
shape: (5, 6)
┌──────────┬────────────┬──────────────┬──────────────────┬─────────┬───────┐
│ locationdatehostclade_nextstraincountrycount │
│ ------------------   │
│ strdatestrstrstru32   │
╞══════════╪════════════╪══════════════╪══════════════════╪═════════╪═══════╡
│ IL2024-10-28Homo sapiens24CUSA1     │
│ IL2024-10-11Homo sapiens24CUSA5     │
│ NY2024-10-08Homo sapiens24BUSA2     │
│ AZ2024-10-15Homo sapiens24CUSA1     │
│ MN2024-10-06Homo sapiens24AUSA2     │
└──────────┴────────────┴──────────────┴──────────────────┴─────────┴───────┘

# Detailed clade assignments
>>> clade_assignments.detail.collect().select(
>>>     ["country", "location", "date", "strain", "clade_nextstrain"]
>>>    ).head()
shape: (5, 5)
┌─────────┬──────────┬────────────┬─────────────────────┬──────────────────┐
│ countrylocationdatestrainclade_nextstrain │
│ ---------------              │
│ strstrdatestrstr              │
╞═════════╪══════════╪════════════╪═════════════════════╪══════════════════╡
│ USAAZ2024-10-01USA/2024CV1711/202424C              │
│ USAAZ2024-10-02USA/2024CV1718/202424C              │
│ USAAZ2024-10-04USA/2024CV1719/202424C              │
│ USAAZ2024-10-05USA/2024CV1721/202424C              │
│ USAAZ2024-10-06USA/2024CV1722/2024recombinant      │
└─────────┴──────────┴────────────┴─────────────────────┴──────────────────┘

Reproducibility

CladeTime objects have an ncov_metadata property with information needed to reproduce the clade assignments in the object's sequence metadata.

In the example below, ncov_metadata shows that the Nextclade dataset used for clade assignment on 2024-09-22 was 2024-07-17--12-57-03Z.

Each version of a SARS-CoV-2 Nextclade dataset contains a reference tree that can be used as an input for clade assignments.

>>> from cladetime import CladeTime
>>> ct = CladeTime(sequence_as_of='2024-09-22')

>>> ct.ncov_metadata.get('nextclade_dataset_name')
'SARS-CoV-2'
>>> ct.ncov_metadata.get('nextclade_dataset_version')
'2024-07-17--12-57-03Z'

Access to historical copies of ncov_metadata is what allows Cladetime to access past reference trees for custom clade assignments. Cladetime retrieves a separate set of ncov_metadata for the tree_as_of date and uses it to pass the correct reference tree to the assign_clades method.

Historical Data Access

Cladetime is designed to work with historical data dating back to May 2023. However, in October 2025, Nextstrain began removing historical metadata_version.json files from their S3 storage, which would prevent access to historical reference tree metadata.

To address this, Cladetime v2.0.0 introduced automatic fallback to the variant-nowcast-hub archives when Nextstrain S3 data is unavailable. This fallback is completely transparent to users:

  1. Cladetime first attempts to retrieve metadata from Nextstrain S3 (fast path)
  2. If the historical metadata is not found, Cladetime automatically searches the variant-nowcast-hub's auxiliary-data/modeled-clades/ directory for archived metadata
  3. The fallback searches for an exact date match first, then searches backward up to 30 days for the nearest prior archive
  4. If metadata is found via fallback, a warning is logged but execution continues normally

Archive availability: The variant-nowcast-hub has maintained weekly metadata archives since September 2024. For dates prior to September 2024, Nextstrain S3 may still be the only source.

No action required: The fallback mechanism works automatically. Users don't need to modify any code or provide additional parameters. If both sources fail, Cladetime will raise an appropriate error with instructions.

>>> from cladetime import CladeTime

# This works even if Nextstrain S3 lacks historical metadata for 2024-10-09
# Cladetime will automatically fall back to variant-nowcast-hub archives
>>> ct = CladeTime(tree_as_of="2024-10-09")
>>> ct.ncov_metadata.get('nextclade_dataset_version')
'2024-09-25--21-50-30Z'

Acknowledgements

Cladetime uses Genbank-based genome sequence data and metadata published by Nextstrain:

Additionally, Cladetime uses the Nextclade project to assign clades to SARS-CoV-2 genome sequences.

About

Python interface for accessing Nextstrain SARS-CoV-2 sequence and clade data

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 8

Languages