Skip to content

πŸŽ’ Token-Oriented Object Notation – JSON for LLMs at half the token cost

License

Notifications You must be signed in to change notification settings

riyak98198-png/toon

Β 
Β 

Repository files navigation

TOON logo with step‑by‑step guide

Token-Oriented Object Notation (TOON)

Token-Oriented Object Notation is a compact, human-readable format designed for passing structured data to Large Language Models with significantly reduced token usage. It's intended for LLM input, not output.

TOON's sweet spot is uniform arrays of objects – multiple fields per row, same structure across items. It borrows YAML's indentation-based structure for nested objects and CSV's tabular format for uniform data rows, then optimizes both for token efficiency in LLM contexts. For deeply nested or non-uniform data, JSON may be more efficient.

Why TOON?

AI is becoming cheaper and more accessible, but larger context windows allow for larger data inputs as well. LLM tokens still cost money – and standard JSON is verbose and token-expensive:

{
  "users": [
    { "id": 1, "name": "Alice", "role": "admin" },
    { "id": 2, "name": "Bob", "role": "user" }
  ]
}

TOON conveys the same information with fewer tokens:

users[2]{id,name,role}:
  1,Alice,admin
  2,Bob,user
Another reason

xkcd: Standards

Key Features

  • πŸ’Έ Token-efficient: typically 30–60% fewer tokens than JSON
  • 🀿 LLM-friendly guardrails: explicit lengths and field lists help models validate output
  • 🍱 Minimal syntax: removes redundant punctuation (braces, brackets, most quotes)
  • πŸ“ Indentation-based structure: replaces braces with whitespace for better readability
  • 🧺 Tabular arrays: declare keys once, then stream rows without repetition

Benchmarks

The benchmarks test datasets that favor TOON's strengths (uniform tabular data). Real-world performance depends heavily on your data structure.

Token Efficiency

⭐ GitHub Repositories       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   8,745 tokens
                             vs JSON: 15,145  (-42.3%)
                             vs YAML: 13,129  (-33.4%)
                             vs XML:  17,095  (-48.8%)

πŸ“ˆ Daily Analytics           β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   4,507 tokens
                             vs JSON: 10,977  (-58.9%)
                             vs YAML:  8,810  (-48.8%)
                             vs XML:  13,128  (-65.7%)

πŸ›’ E-Commerce Order          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘     166 tokens
                             vs JSON:    257  (-35.4%)
                             vs YAML:    197  (-15.7%)
                             vs XML:     271  (-38.7%)

─────────────────────────────────────────────────────────────────────
Total                        β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  13,418 tokens
                             vs JSON: 26,379  (-49.1%)
                             vs YAML: 22,136  (-39.4%)
                             vs XML:  30,494  (-56.0%)
View detailed examples

⭐ GitHub Repositories

Configuration: Top 100 GitHub repositories with stars, forks, and metadata

Savings: 6,400 tokens (42.3% reduction vs JSON)

JSON (15,145 tokens):

{
  "repositories": [
    {
      "id": 28457823,
      "name": "freeCodeCamp",
      "repo": "freeCodeCamp/freeCodeCamp",
      "description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
      "createdAt": "2014-12-24T17:49:19Z",
      "updatedAt": "2025-10-28T11:58:08Z",
      "pushedAt": "2025-10-28T10:17:16Z",
      "stars": 430886,
      "watchers": 8583,
      "forks": 42146,
      "defaultBranch": "main"
    },
    {
      "id": 132750724,
      "name": "build-your-own-x",
      "repo": "codecrafters-io/build-your-own-x",
      "description": "Master programming by recreating your favorite technologies from scratch.",
      "createdAt": "2018-05-09T12:03:18Z",
      "updatedAt": "2025-10-28T12:37:11Z",
      "pushedAt": "2025-10-10T18:45:01Z",
      "stars": 430877,
      "watchers": 6332,
      "forks": 40453,
      "defaultBranch": "master"
    },
    {
      "id": 21737465,
      "name": "awesome",
      "repo": "sindresorhus/awesome",
      "description": "😎 Awesome lists about all kinds of interesting topics",
      "createdAt": "2014-07-11T13:42:37Z",
      "updatedAt": "2025-10-28T12:40:21Z",
      "pushedAt": "2025-10-27T17:57:31Z",
      "stars": 410052,
      "watchers": 8017,
      "forks": 32029,
      "defaultBranch": "main"
    }
  ]
}

TOON (8,745 tokens):

repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
  28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-28T11:58:08Z","2025-10-28T10:17:16Z",430886,8583,42146,main
  132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-28T12:37:11Z","2025-10-10T18:45:01Z",430877,6332,40453,master
  21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-28T12:40:21Z","2025-10-27T17:57:31Z",410052,8017,32029,main

πŸ“ˆ Daily Analytics

Configuration: 180 days of web metrics (views, clicks, conversions, revenue)

Savings: 6,470 tokens (58.9% reduction vs JSON)

JSON (10,977 tokens):

{
  "metrics": [
    {
      "date": "2025-01-01",
      "views": 6890,
      "clicks": 401,
      "conversions": 23,
      "revenue": 6015.59,
      "bounceRate": 0.63
    },
    {
      "date": "2025-01-02",
      "views": 6940,
      "clicks": 323,
      "conversions": 37,
      "revenue": 9086.44,
      "bounceRate": 0.36
    },
    {
      "date": "2025-01-03",
      "views": 4390,
      "clicks": 346,
      "conversions": 26,
      "revenue": 6360.75,
      "bounceRate": 0.48
    },
    {
      "date": "2025-01-04",
      "views": 3429,
      "clicks": 231,
      "conversions": 13,
      "revenue": 2360.96,
      "bounceRate": 0.65
    },
    {
      "date": "2025-01-05",
      "views": 5804,
      "clicks": 186,
      "conversions": 22,
      "revenue": 2535.96,
      "bounceRate": 0.37
    }
  ]
}

TOON (4,507 tokens):

metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
  2025-01-01,6890,401,23,6015.59,0.63
  2025-01-02,6940,323,37,9086.44,0.36
  2025-01-03,4390,346,26,6360.75,0.48
  2025-01-04,3429,231,13,2360.96,0.65
  2025-01-05,5804,186,22,2535.96,0.37

Note

Measured with gpt-tokenizer using o200k_base encoding (used by GPT-5 and other modern models). Savings will vary across models and tokenizers.

Retrieval Accuracy

Accuracy across 4 LLMs on 154 data retrieval questions:

gpt-5-nano
β†’ toon         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘  96.1% (148/154)
  csv          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘  90.3% (139/154)
  yaml         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘  89.0% (137/154)
  json         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘  87.7% (135/154)
  xml          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘  83.8% (129/154)

claude-haiku-4-5-20251001
  yaml         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  49.4% (76/154)
β†’ toon         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  48.1% (74/154)
  csv          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  48.1% (74/154)
  json         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  47.4% (73/154)
  xml          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  46.8% (72/154)

gemini-2.5-flash
  csv          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘  87.7% (135/154)
  xml          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘  85.1% (131/154)
β†’ toon         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘  83.8% (129/154)
  json         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘  78.6% (121/154)
  yaml         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘  76.6% (118/154)

grok-4-fast-non-reasoning
β†’ toon         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  48.7% (75/154)
  json         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  48.1% (74/154)
  xml          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  47.4% (73/154)
  yaml         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  46.8% (72/154)
  csv          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘  45.5% (70/154)

Key tradeoff: TOON achieves 69.2% accuracy (vs JSON's 65.4%) while using 46.3% fewer tokens on these datasets.

Performance by dataset and model

Performance by Dataset

Uniform employee records (TOON optimal format)
Format Accuracy Tokens Correct/Total
csv 67.0% 2,337 134/200
toon 66.5% 2,483 133/200
yaml 65.5% 4,969 131/200
json 63.5% 6,347 127/200
xml 66.5% 7,314 133/200
E-commerce orders with nested structures
Format Accuracy Tokens Correct/Total
toon 78.8% 5,967 126/160
csv 71.9% 6,735 115/160
yaml 71.9% 7,328 115/160
json 73.1% 9,694 117/160
xml 73.8% 10,992 118/160
Time-series analytics data
Format Accuracy Tokens Correct/Total
csv 67.6% 1,393 92/136
toon 67.6% 1,515 92/136
yaml 64.7% 2,938 88/136
json 68.4% 3,665 93/136
xml 66.2% 4,376 90/136
Top 100 GitHub repositories
Format Accuracy Tokens Correct/Total
csv 64.2% 8,513 77/120
toon 62.5% 8,745 75/120
yaml 57.5% 13,129 69/120
json 55.0% 15,145 66/120
xml 53.3% 17,095 64/120

Performance by Model

gpt-5-nano
Format Accuracy Correct/Total
toon 96.1% 148/154
csv 90.3% 139/154
yaml 89.0% 137/154
json 87.7% 135/154
xml 83.8% 129/154
claude-haiku-4-5-20251001
Format Accuracy Correct/Total
yaml 49.4% 76/154
toon 48.1% 74/154
csv 48.1% 74/154
json 47.4% 73/154
xml 46.8% 72/154
gemini-2.5-flash
Format Accuracy Correct/Total
csv 87.7% 135/154
xml 85.1% 131/154
toon 83.8% 129/154
json 78.6% 121/154
yaml 76.6% 118/154
grok-4-fast-non-reasoning
Format Accuracy Correct/Total
toon 48.7% 75/154
json 48.1% 74/154
xml 47.4% 73/154
yaml 46.8% 72/154
csv 45.5% 70/154
How the benchmark works

What's Being Measured

This benchmark tests LLM comprehension and data retrieval accuracy across different input formats. Each LLM receives formatted data and must answer questions about it (this does not test model's ability to generate TOON output).

Datasets Tested

Four datasets designed to test different structural patterns (all contain arrays of uniform objects, TOON's optimal format):

  1. Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
  2. Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
  3. Analytics (60 days of metrics): Time-series data with dates and numeric values.
  4. GitHub (100 repositories): Real-world data from top GitHub repos by stars.

Question Types

154 questions are generated dynamically across three categories:

  • Field retrieval (40%): Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)

    • Example: "What is Alice's salary?" β†’ 75000
    • Example: "How many items are in order ORD-0042?" β†’ 3
    • Example: "What is the customer name for order ORD-0042?" β†’ John Doe
  • Aggregation (32%): Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)

    • Example: "How many employees work in Engineering?" β†’ 17
    • Example: "What is the total revenue across all orders?" β†’ 45123.50
    • Example: "How many employees have salary > 80000?" β†’ 23
  • Filtering (28%): Multi-condition queries requiring compound logic (AND constraints across fields)

    • Example: "How many employees in Sales have salary > 80000?" β†’ 5
    • Example: "How many active employees have more than 10 years of experience?" β†’ 8

Evaluation Process

  1. Format conversion: Each dataset is converted to all 5 formats (TOON, CSV, XML, JSON, YAML).
  2. Query LLM: Each model receives formatted data + question in a prompt and extracts the answer.
  3. Validate with LLM-as-judge: gpt-5-nano validates if the answer is semantically correct (e.g., 50000 = $50,000, Engineering = engineering, 2025-01-01 = January 1, 2025).

Models & Configuration

  • Models tested: gpt-5-nano, claude-haiku-4-5-20251001, gemini-2.5-flash, grok-4-fast-non-reasoning
  • Token counting: Using gpt-tokenizer with o200k_base encoding (GPT-5 tokenizer)
  • Temperature: Not set (models use their defaults)
  • Total evaluations: 154 questions Γ— 5 formats Γ— 4 models = 3,080 LLM calls

Installation

# npm
npm install @byjohann/toon

# pnpm
pnpm add @byjohann/toon

# yarn
yarn add @byjohann/toon

Quick Start

import { encode } from '@byjohann/toon'

const data = {
  user: {
    id: 123,
    name: 'Ada',
    tags: ['reading', 'gaming'],
    active: true,
    preferences: []
  }
}

console.log(encode(data))

Output:

user:
  id: 123
  name: Ada
  tags[2]: reading,gaming
  active: true
  preferences[0]:

Canonical Formatting Rules

TOON formatting is deterministic and minimal:

  • Indentation: 2 spaces per nesting level.
  • Lines:
    • key: value for primitives (single space after colon).
    • key: for nested/empty objects (no trailing space on that line).
  • Arrays:
    • Delimiter encoding: Comma delimiters are implicit in array headers (e.g., tags[3]:, items[2]{id,name}:). Tab and pipe delimiters are explicitly shown in array headers (e.g., tags[3|]:, items[2 ]{id name}:).
    • Primitive arrays inline: key[N]: v1,v2 (comma) or key[N<delim>]: v1<delim>v2 (tab/pipe).
    • Tabular arrays: key[N]{f1,f2}: … (comma) or key[N<delim>]{f1<delim>f2}: … (tab/pipe).
    • List items: two spaces, hyphen, space (" - …").
  • Whitespace invariants:
    • No trailing spaces at end of any line.
    • No trailing newline at end of output.

Format Overview

Objects

Simple objects with primitive values:

encode({
  id: 123,
  name: 'Ada',
  active: true
})
id: 123
name: Ada
active: true

Nested objects:

encode({
  user: {
    id: 123,
    name: 'Ada'
  }
})
user:
  id: 123
  name: Ada

Arrays

Tip

TOON includes the array length in brackets (e.g., items[3]). When using comma delimiters (default), the delimiter is implicit. When using tab or pipe delimiters, the delimiter is explicitly shown in the header (e.g., tags[2|] or [2 ]). This encoding helps LLMs identify the delimiter and track the number of elements, reducing errors when generating or validating structured output.

Primitive Arrays (Inline)

encode({
  tags: ['admin', 'ops', 'dev']
})
tags[3]: admin,ops,dev

Arrays of Objects (Tabular)

When all objects share the same primitive fields, TOON uses an efficient tabular format:

encode({
  items: [
    { sku: 'A1', qty: 2, price: 9.99 },
    { sku: 'B2', qty: 1, price: 14.5 }
  ]
})
items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5

Tabular formatting applies recursively: nested arrays of objects (whether as object properties or inside list items) also use tabular format if they meet the same requirements.

encode({
  items: [
    {
      users: [
        { id: 1, name: 'Ada' },
        { id: 2, name: 'Bob' }
      ],
      status: 'active'
    }
  ]
})
items[1]:
  - users[2]{id,name}:
    1,Ada
    2,Bob
    status: active

Mixed and Non-Uniform Arrays

Arrays that don't meet the tabular requirements use list format:

items[3]:
  - 1
  - a: 1
  - text

When objects appear in list format, the first field is placed on the hyphen line:

items[2]:
  - id: 1
    name: First
  - id: 2
    name: Second
    extra: true

Note

Nested array indentation: When the first field of a list item is an array (primitive, tabular, or nested), its contents are indented two spaces under the header line, and subsequent fields of the same object appear at that same indentation level. This remains unambiguous because list items begin with "- ", tabular arrays declare a fixed row count in their header, and object fields contain ":".

Arrays of Arrays

When you have arrays containing primitive inner arrays:

encode({
  pairs: [
    [1, 2],
    [3, 4]
  ]
})
pairs[2]:
  - [2]: 1,2
  - [2]: 3,4

Empty Arrays and Objects

Empty containers have special representations:

encode({ items: [] }) // items[0]:
encode([]) // [0]:
encode({}) // (empty output)
encode({ config: {} }) // config:

Quoting Rules

TOON quotes strings only when necessary to maximize token efficiency:

  • Inner spaces are allowed; leading or trailing spaces force quotes.
  • Unicode and emoji are safe unquoted.
  • Quotes and control characters are escaped with backslash.

Note

When using alternative delimiters (tab or pipe), the quoting rules adapt automatically. Strings containing the active delimiter will be quoted, while other delimiters remain safe.

Object Keys and Field Names

Keys are unquoted if they match the identifier pattern: start with a letter or underscore, followed by letters, digits, underscores, or dots (e.g., id, userName, user_name, user.name, _private). All other keys must be quoted (e.g., "user name", "order-id", "123", "order:id", "").

String Values

String values are quoted when any of the following is true:

Condition Examples
Empty string ""
Leading or trailing spaces " padded ", " "
Contains active delimiter, colon, quote, backslash, or control chars "a,b" (comma), "a\tb" (tab), "a|b" (pipe), "a:b", "say \"hi\"", "C:\\Users", "line1\\nline2"
Looks like boolean/number/null "true", "false", "null", "42", "-3.14", "1e-6", "05"
Starts with "- " (list-like) "- item"
Looks like structural token "[5]", "{key}", "[3]: x,y"

Examples of unquoted strings: Unicode and emoji are safe (hello πŸ‘‹ world), as are strings with inner spaces (hello world).

Important

Delimiter-aware quoting: Unquoted strings never contain : or the active delimiter. This makes TOON reliably parseable with simple heuristics: split key/value on first : , and split array values on the delimiter declared in the array header. When using tab or pipe delimiters, commas don't need quoting – only the active delimiter triggers quoting for both array values and object values.

Type Conversions

Some non-JSON types are automatically normalized for LLM-safe output:

Input Output
Number (finite) Decimal form, no scientific notation (e.g., -0 β†’ 0, 1e6 β†’ 1000000)
Number (NaN, Β±Infinity) null
BigInt If within safe integer range: converted to number. Otherwise: quoted decimal string (e.g., "9007199254740993")
Date ISO string in quotes (e.g., "2025-01-01T00:00:00.000Z")
undefined null
function null
symbol null

API

encode(value: unknown, options?: EncodeOptions): string

Converts any JSON-serializable value to TOON format.

Parameters:

  • value – Any JSON-serializable value (object, array, primitive, or nested structure). Non-JSON-serializable values (functions, symbols, undefined, non-finite numbers) are converted to null. Dates are converted to ISO strings, and BigInts are emitted as decimal integers (no quotes).
  • options – Optional encoding options:
    • indent?: number – Number of spaces per indentation level (default: 2)
    • delimiter?: ',' | '\t' | '|' – Delimiter for array values and tabular rows (default: ',')
    • lengthMarker?: '#' | false – Optional marker to prefix array lengths (default: false)

Returns:

A TOON-formatted string with no trailing newline or spaces.

Example:

import { encode } from '@byjohann/toon'

const items = [
  { sku: 'A1', qty: 2, price: 9.99 },
  { sku: 'B2', qty: 1, price: 14.5 }
]

encode({ items })

Output:

items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5

Delimiter Options

The delimiter option allows you to choose between comma (default), tab, or pipe delimiters for array values and tabular rows. Alternative delimiters can provide additional token savings in specific contexts.

Tab Delimiter (\t)

Using tab delimiters instead of commas can reduce token count further, especially for tabular data:

const data = {
  items: [
    { sku: 'A1', name: 'Widget', qty: 2, price: 9.99 },
    { sku: 'B2', name: 'Gadget', qty: 1, price: 14.5 }
  ]
}

encode(data, { delimiter: '\t' })

Output:

items[2	]{sku	name	qty	price}:
  A1	Widget	2	9.99
  B2	Gadget	1	14.5

Benefits:

  • Tabs are single characters and often tokenize more efficiently than commas.
  • Tabs rarely appear in natural text, reducing the need for quote-escaping.
  • The delimiter is explicitly encoded in the array header, making it self-descriptive.

Considerations:

  • Some terminals and editors may collapse or expand tabs visually.
  • String values containing tabs will still require quoting.
Pipe Delimiter (|)

Pipe delimiters offer a middle ground between commas and tabs:

encode(data, { delimiter: '|' })

Output:

items[2|]{sku|name|qty|price}:
  A1|Widget|2|9.99
  B2|Gadget|1|14.5

Length Marker Option

The lengthMarker option adds an optional hash (#) prefix to array lengths to emphasize that the bracketed value represents a count, not an index:

const data = {
  tags: ['reading', 'gaming', 'coding'],
  items: [
    { sku: 'A1', qty: 2, price: 9.99 },
    { sku: 'B2', qty: 1, price: 14.5 },
  ],
}

encode(data, { lengthMarker: '#' })
// tags[#3]: reading,gaming,coding
// items[#2]{sku,qty,price}:
//   A1,2,9.99
//   B2,1,14.5

// Works with custom delimiters
encode(data, { lengthMarker: '#', delimiter: '|' })
// tags[#3|]: reading|gaming|coding
// items[#2|]{sku|qty|price}:
//   A1|2|9.99
//   B2|1|14.5

decode(input: string, options?: DecodeOptions): JsonValue

Converts a TOON-formatted string back to JavaScript values.

Parameters:

  • input – A TOON-formatted string to parse
  • options – Optional decoding options:
    • indent?: number – Expected number of spaces per indentation level (default: 2)
    • strict?: boolean – Enable strict validation (default: true)

Returns:

A JavaScript value (object, array, or primitive) representing the parsed TOON data.

Example:

import { decode } from '@byjohann/toon'

const toon = `items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5`

const data = decode(toon)
// {
//   items: [
//     { sku: 'A1', qty: 2, price: 9.99 },
//     { sku: 'B2', qty: 1, price: 14.5 }
//   ]
// }

Strict Mode:

By default, the decoder validates input strictly:

  • Invalid escape sequences – Throws on "\x", unterminated strings
  • Syntax errors – Throws on missing colons, malformed headers
  • Array length mismatches – Throws when declared length doesn't match actual count
  • Delimiter mismatches – Throws when row delimiters don't match header

Notes and Limitations

  • Format familiarity and structure matter as much as token count. TOON's tabular format requires arrays of objects with identical keys and primitive values only. When this doesn't hold (due to mixed types, non-uniform objects, or nested structures), TOON switches to list format where JSON can be more efficient at scale.
    • TOON excels at: Uniform arrays of objects (same fields, primitive values), especially large datasets with consistent structure.
    • JSON is better for: Non-uniform data, deeply nested structures, and objects with varying field sets.
  • Token counts vary by tokenizer and model. Benchmarks use a GPT-style tokenizer (cl100k/o200k); actual savings will differ with other models (e.g., SentencePiece).
  • TOON is designed for LLM input where human readability and token efficiency matter. It's not a drop-in replacement for JSON in APIs or storage.

Using TOON in LLM Prompts

TOON works best when you show the format instead of describing it. The structure is self-documenting – models parse it naturally once they see the pattern.

Sending TOON to LLMs (Input)

Wrap your encoded data in a fenced code block (label it ```toon for clarity). The indentation and headers are usually enough – models treat it like familiar YAML or CSV. The explicit length markers ([N]) and field headers ({field1,field2}) help the model track structure, especially for large tables.

Generating TOON from LLMs (Output)

For output, be more explicit. When you want the model to generate TOON:

  • Show the expected header (users[N]{id,name,role}:). The model fills rows instead of repeating keys, reducing generation errors.
  • State the rules: 2-space indent, no trailing spaces, [N] matches row count.

Here's a prompt that works for both reading and generating:

Data is in TOON format (2-space indent, arrays show length and fields).

\`\`\`toon
users[3]{id,name,role,lastLogin}:
  1,Alice,admin,2025-01-15T10:30:00Z
  2,Bob,user,2025-01-14T15:22:00Z
  3,Charlie,user,2025-01-13T09:45:00Z
\`\`\`

Task: Return only users with role "user" as TOON. Use the same header. Set [N] to match the row count. Output only the code block.

Tip

For large uniform tables, use encode(data, { delimiter: '\t' }) and tell the model "fields are tab-separated." Tabs often tokenize better than commas and reduce the need for quote-escaping.

Quick Reference

// Object
{ id: 1, name: 'Ada' }          β†’ id: 1
                                  name: Ada

// Nested object
{ user: { id: 1 } }             β†’ user:
                                    id: 1

// Primitive array (inline)
{ tags: ['foo', 'bar'] }        β†’ tags[2]: foo,bar

// Tabular array (uniform objects)
{ items: [                      β†’ items[2]{id,qty}:
  { id: 1, qty: 5 },                1,5
  { id: 2, qty: 3 }                 2,3
]}

// Mixed / non-uniform (list)
{ items: [1, { a: 1 }, 'x'] }   β†’ items[3]:
                                    - 1
                                    - a: 1
                                    - x

// Array of arrays
{ pairs: [[1, 2], [3, 4]] }     β†’ pairs[2]:
                                    - [2]: 1,2
                                    - [2]: 3,4

// Root array
['x', 'y']                      β†’ [2]: x,y

// Empty containers
{}                              β†’ (empty output)
{ items: [] }                   β†’ items[0]:

// Special quoting
{ note: 'hello, world' }        β†’ note: "hello, world"
{ items: ['true', true] }       β†’ items[2]: "true",true

Ports in Other Languages

License

MIT License Β© 2025-PRESENT Johann Schopplich

About

πŸŽ’ Token-Oriented Object Notation – JSON for LLMs at half the token cost

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • TypeScript 99.9%
  • JavaScript 0.1%