Skip to content

rongshenga/DANN_py3

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a pytorch implementation of the paper Unsupervised Domain Adaptation by Backpropagation

Environment

  • Pytorch 1.0
  • Python 3.7

Network Structure

p8KTyD.md.jpg

Dataset

First, download target dataset mnist_m from pan.baidu.com fetch code: kjan or Google Drive

cd DANN_py3
mkdir dataset
cd dataset
mkdir mnist_m
cd mnist_m
tar -zvxf mnist_m.tar.gz
mkdir models

Training

Then, run python main.py

Docker

  • build image
docker build -t pytorch_dann .
  • run docker container
docker run -it --runtime=nvidia \
  -u $(id -u):$(id -g) \
  -v /YOUR/DANN/PROJECT/dataset:/DANN/dataset \
  -v /YOUR/DANN/PROJECT/models:/DANN/models \
  pytorch_dann:latest \
  python main.py

About

python 3 pytorch implementation of DANN

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.4%
  • Dockerfile 3.6%