-
Notifications
You must be signed in to change notification settings - Fork 0
sachincmathew/langchain
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
# LangChain Learning Demos Personal learning repository for LangChain examples and demonstrations. ## Learning Resources - [Building AI Apps with LangChain](https://youtu.be/yF9kGESAi3M?feature=shared) - [LangChain Tutorial](https://youtu.be/i-oHvHejdsc?feature=shared) ## Tech Used - LangChain - Python framework for building LLM applications - Vector Databases - For storing and retrieving text embeddings - PineCone - AstraDB (single demo) - Text Splitters: - CharacterTextSplitter - RecursiveCharacterTextSplitter - TokenTextSplitter - Embeddings: - OpenAI Embeddings - HuggingFace Embeddings - Retrievers: - Similarity Search - MMR (Maximal Marginal Relevance) - Time-weighted Vector Store - Loading Tools: - TextLoader - For processing text files - WebBaseLoader - For loading web content - FireCrawl - For web crawling - Large Language Models: - OpenAI - GPT-4 - GPT-3.5-turbo - Anthropic - Claude-3-Sonnet - Google - Gemini 2.0 - NVIDIA - Mixtral 8x22B - Groq - Mixtral 8x7B ## Overall Process Flow ```mermaid graph LR; A[Read Text] --> B[Split into Chunks]; B --> C[Store in Vector DB]; C --> D[Retrieve from Vector DB]; D --> E[Send to GAI Model]; ``` A. Read Text - Text files (TextLoader) - Web content (WebBaseLoader, FireCrawl) B. Split into Chunks - The chunking strategy plays an important role. #3 has different examples. D. Retrieve from Vector DB - There are different retrieval strategies. #5 has different examples.
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published