Skip to content

sorpaas/asc15-gridding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Optimization of the Gridding program on the CPU+MIC Platform

The code that is required to be optimized is the gridKernel function:

    const int sSize = 2 * support + 1;

    for (int dind = 0; dind < int(samples.size()); ++dind) {
        // The actual grid point from which we offset
        int gind = samples[dind].iu + gSize * samples[dind].iv - support;

        // The Convoluton function point from which we offset
        int cind = samples[dind].cOffset;

        for (int suppv = 0; suppv < sSize; suppv++) {
            Value* gptr = &grid[gind];
            const Value* cptr = &C[cind];
            const Value d = samples[dind].data;
            for (int suppu = 0; suppu < sSize; suppu++) {
                *(gptr++) += d * (*(cptr++));
            }

            gind += gSize;
            cind += sSize;
        }
    }

It contains 3 nested for loops, which can be paralleled in order to improve performace.

Optimization of the for-loop in the first level

It's easy to see that the for-loop in the first level is independent from each other, thus we can directly use OpenMP's parallel for feature. The resulting code may look like this:

    const int sSize = 2 * support + 1;

#pragma omp parallel for
    for (int dind = 0; dind < int(samples.size()); ++dind) {
        // The actual grid point from which we offset
        int gind = samples[dind].iu + gSize * samples[dind].iv - support;

        // The Convoluton function point from which we offset
        int cind = samples[dind].cOffset;

        for (int suppv = 0; suppv < sSize; suppv++) {
            Value* gptr = &grid[gind];
            const Value* cptr = &C[cind];
            const Value d = samples[dind].data;
            for (int suppu = 0; suppu < sSize; suppu++) {
                *(gptr++) += d * (*(cptr++));
            }

            gind += gSize;
            cind += sSize;
        }
    }

Optimization of the for-loop in the second level

The second level's for-loop may seem dependent from the first glance. The variable gptr and the pointer to the constant variable cptr depends on integers gind and cind in the upper level, which is then modified inside the for-loop in the second level.

In order to optimize them, we first move integers gind and cind to the second level's for-loop, since they are not used in the first level's for-loop:

    const int sSize = 2 * support + 1;

#pragma omp parallel for
    for (int dind = 0; dind < int(samples.size()); ++dind) {
        for (int suppv = 0; suppv < sSize; suppv++) {
            int gind = samples[dind].iu + gSize * samples[dind].iv - support;
            int cind = samples[dind].cOffset;

            Value* gptr = &grid[gind];
            const Value* cptr = &C[cind];
            const Value d = samples[dind].data;
            for (int suppu = 0; suppu < sSize; suppu++) {
                *(gptr++) += d * (*(cptr++));
            }

            gind += gSize;
            cind += sSize;
        }
    }

This doesn't work because before the change, gind and cind are shared among all for-loops, and they are increased in each of them. However, we can easily see the trend that the amount of the increasement only depends on suppv. We change the last two lines of the code to make it work:

    const int sSize = 2 * support + 1;

#pragma omp parallel for
    for (int dind = 0; dind < int(samples.size()); ++dind) {
        for (int suppv = 0; suppv < sSize; suppv++) {
            int gind = samples[dind].iu + gSize * samples[dind].iv - support;
            int cind = samples[dind].cOffset;

            gind += gSize * suppv;
            cind += sSize * suppv;

            Value* gptr = &grid[gind];
            const Value* cptr = &C[cind];
            const Value d = samples[dind].data;
            for (int suppu = 0; suppu < sSize; suppu++) {
                *(gptr++) += d * (*(cptr++));
            }
        }
    }

In this way, we make the second level for-loop independent from each other. Let's use OpenMP's parallel for feature again to make them parallel:

    const int sSize = 2 * support + 1;

#pragma omp parallel for
    for (int dind = 0; dind < int(samples.size()); ++dind) {
#pragma omp parallel for
        for (int suppv = 0; suppv < sSize; suppv++) {
            int gind = samples[dind].iu + gSize * samples[dind].iv - support;
            int cind = samples[dind].cOffset;

            gind += gSize * suppv;
            cind += sSize * suppv;

            Value* gptr = &grid[gind];
            const Value* cptr = &C[cind];
            const Value d = samples[dind].data;
            for (int suppu = 0; suppu < sSize; suppu++) {
                *(gptr++) += d * (*(cptr++));
            }
        }
    }

Optimization of the for-loop in the third level

With the experience of optimizing the second level for-loop, we can apply the same method for the third level:

    const int sSize = 2 * support + 1;

#pragma omp parallel for
    for (int dind = 0; dind < int(samples.size()); ++dind) {
#pragma omp parallel for
        for (int suppv = 0; suppv < sSize; suppv++) {
            int gind = samples[dind].iu + gSize * samples[dind].iv - support;
            int cind = samples[dind].cOffset;

            gind += gSize * suppv;
            cind += sSize * suppv;

            const Value d = samples[dind].data;
#pragma omp parallel for
            for (int suppu = 0; suppu < sSize; suppu++) {
                Value* gptr = &grid[gind];
                const Value* cptr = &C[cind];

                gptr += suppu;
                cptr += suppu;

                *(gptr) += d * (*(cptr));
            }
        }
    }

Critical Part

The line *(gptr) += d * (*(cptr)) modifies data outside the for-loop. They must run atomically in order to prevent data from breaking:

    const int sSize = 2 * support + 1;

#pragma omp parallel for
    for (int dind = 0; dind < int(samples.size()); ++dind) {
#pragma omp parallel for
        for (int suppv = 0; suppv < sSize; suppv++) {
            int gind = samples[dind].iu + gSize * samples[dind].iv - support;
            int cind = samples[dind].cOffset;

            gind += gSize * suppv;
            cind += sSize * suppv;

            const Value d = samples[dind].data;
#pragma omp parallel for
            for (int suppu = 0; suppu < sSize; suppu++) {
                Value* gptr = &grid[gind];
                const Value* cptr = &C[cind];

                gptr += suppu;
                cptr += suppu;
#pragma omp critical
                *(gptr) += d * (*(cptr));
            }
        }
    }

About

The Gridding Code for ASC15.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published