Yufei Ye, Yao Feng, Omid Taheri, Haiwen Feng, Shubham Tulsiani*, Michael J. Black* (*Equal Contribution)
TLDR: Existing methods produce convincing reprojection but their 4D trajectories are not plausible. HaPTIC reconstructs Hand Pose and 4D hand Trajectory in consistent global Coordinate while maintaining strong 2D alignment.
teaser.mp4
- Install the environment and download our pretrained model.
conda create -n haptic python=3.10 -y conda activate haptic bash scripts/one_click.sh - Additionally, due to license restrictions, you need to download the MANO model from the official MANO website. Put the files under
assets/ mano/ MANO_RIGHT.pkl ... example/ vid1/video.mp4 vid2/video.mp4 video_list.yaml
Given a list of videos under data.video_dir, predict hand trajectories:
python -m demo -m expname=release/mix_all \
data.video_dir=assets/examples \
data.video_list=assets/examples/video_list.yaml
Uncomment lines in assets/examples/video_list.yaml to run on more videos.
You should see something similar to this:
| Global overlay | Global sideview | Local overlay | Local sideview |
|---|---|---|---|
- Download our preprocessed video labels and single-image training batch
bash dl_training_data.sh
- Download raw RGB images from each dataset's official website individually. Specify their root directory in
haptic/configs/datasets_tar.yaml:${DATASET}.img_dir- HO2O
- DexYCB
- ARCTIC
- HO3Dv3
- InterHand2.6M
python -m train \
expname=reproduce/\${DATASETS.name} \
data=ego_mix
Parts of the code are taken or adapted from the following repos:
@article{ye2025predicting,
title={Predicting 4D Hand Trajectory from Monocular Videos},
author={Ye, Yufei and Feng, Yao and Taheri, Omid and Feng, Haiwen and Tulsiani, Shubham and Black, Michael J},
journal={arXiv preprint arXiv:2501.08329},
year={2025}
}