This project is designed to train and use an Optical Character Recognition (OCR) model for recognizing characters in CAPTCHA images.
mb_capcha_ocr/: Contains the core OCR model and prediction logic.train_model/: Contains the training script for the OCR model.
-
Clone the repository:
git clone https://github.com/thedtvn/mbbank-capcha-ocr cd mbbank-capcha-ocr cd train_model
-
Create and activate a virtual environment:
python -m venv .venv source .venv/bin/activate # On Windows use `.venv\Scripts\activate`
-
Install the required dependencies:
pip install -r train_requirements.txt
-
Place your training and testing images in the
dataset/directory. The images should be named in the format{label}.(png|jpg|jpeg). -
Run the training script:
python train.py
-
The trained model will be saved as
model.onnxin the directory.
from PIL import Image
from mb_capcha_ocr import OcrModel
model = OcrModel() # model_path optional if using custom model
img = Image.open("path_to_image.png")
predicted_text = model.predict(img)
print(predicted_text)train_model/train.py: Script to train the OCR model.mb_capcha_ocr/predict.py: Script to predict text from an image using the trained OCR model.requirements.txt: List of dependencies required for the project.
- Python 3.x
- numpy
- onnxruntime
- Pillow
- Python 3.x
- torch
- torchvision
- matplotlib
- Pillow
- onnx
This project is licensed under the MIT License. See the LICENSE file for more details.
Best thanks to CookieGMVN for providing the dataset V1 V2.