You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Fertility Diagnoser is a web application that utilizes machine learning to predict fertility levels. By inputting relevant data such as age and other factors, users can receive personalized predictions about their fertility. The application seamlessly integrates React and Python, offering a user-friendly interface and accurate predictions.
Tanulmányomban az egy főre eső GDP és munkanélküliség teljes termékenységi arányszámra gyakorolt hatását elemzem. A választott eszközök között szerepel az Engel-Granger kointegrációs teszt, amellyel megerősítettem a hipotézist, hogy szomszédos országok termékenységi rátájának alakulása általában nagyobb egyezőséget mutat, melynek magyarázata leh…
This project analyzes the demographic transition in the United States, focusing on historical changes in fertility and mortality patterns. Using models like Lee-Carter and Renshaw-Haberman, it explores the impact of socio-economic factors, healthcare advancements, and cultural shifts on population dynamics, forecasting trends for the next 50 years.
This repository contains the code required to perform the data processing and analysis associated with the manuscript submitted to Nature under the name "Maladaptive Genetic Assortment in Humans
This is an interactive map created to show data used in the ERC grant BIC.LATE project. It displays data on IVF access and funding in Europe and others.
PrESOgenesis is a Support Vector Machine-based classifier to predict the spermatogenesis/embryogenesis/oogenesis related proteins based on 1920 meaningful protein sequence features.
Exploring the genetic and behavioral factors behind the fertility-longevity trade-off, this project uses survival analysis and polygenic risk scores to uncover the complex interplay of reproductive behavior, socio-demographic influences, and genetic predispositions in shaping human lifespan.
The use of machine learning on the Fertility and Women's Labor Supply data set to predict whether someone will want more kids based on their age, ethinicity, work hours, and gender of their 1st child?