Skip to content

vovw/moespeed

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

╔══════════════════════════════════════════════════════════════════════════╗
║                                                                          ║
║  ███╗   ███╗ ██████╗ ███████╗███████╗██████╗ ███████╗███████╗██████╗     ║
║  ████╗ ████║██╔═══██╗██╔════╝██╔════╝██╔══██╗██╔════╝██╔════╝██╔══██╗    ║
║  ██╔████╔██║██║   ██║█████╗  ███████╗██████╔╝█████╗  █████╗  ██║  ██║    ║
║  ██║╚██╔╝██║██║   ██║██╔══╝  ╚════██║██╔═══╝ ██╔══╝  ██╔══╝  ██║  ██║    ║
║  ██║ ╚═╝ ██║╚██████╔╝███████╗███████║██║     ███████╗███████╗██████╔╝    ║
║  ╚═╝     ╚═╝ ╚═════╝ ╚══════╝╚══════╝╚═╝     ╚══════╝╚══════╝╚═════╝     ║
╚══════════════════════════════════════════════════════════════════════════╝


Based on DeepSeek-V2/V3 Multi-Latent Attention + Expert Parallelism Research
Inspired by Switch-Head, MoEUT papers, and NanoGPT speedrun optimizations

┌─────────────────┬───────────────────┬──────────────────┬────────────────────────────────────────────────┐
│   COMPONENT     │    IMPLEMENTATION │       PURPOSE    │                INTENT                          │
├─────────────────┼───────────────────┼──────────────────┼────────────────────────────────────────────────┤
│ Multi-Latent    │ Low-rank Q/K/V    │ Parameter        │ Shared RoPE across heads + joint KV embedding  │
│ Attention (MLA) │ projections       │ efficiency       │ inspired by DeepSeek-V2 architecture           │ 
├─────────────────┼───────────────────┼──────────────────┼────────────────────────────────────────────────┤
│ Mixture of      │ Expert parallel   │ Model            │ Distributed experts across GPUs with           │
│ Experts (MoE)   │ distribution      │ expressivity     │ all-gather/reduce-scatter communication        │
├─────────────────┼───────────────────┼──────────────────┼────────────────────────────────────────────────┤
│ FlexAttention   │ Block-sparse      │ Long context     │ Document-aware causal masking with             │
│                 │ attention         │ efficiency       │ sliding window for 48K+ token sequences        │
├─────────────────┼───────────────────┼──────────────────┼────────────────────────────────────────────────┤
│ ReLU²           │ Squared ReLU      │ Sample           │ 1-2% better than GELU for larger models        │
│ Activation      │ activation        │ efficiency       │ as discovered in NanoGPT experiments           │ 
└─────────────────┴───────────────────┴──────────────────┴────────────────────────────────────────────────┘

Attention Mechanism 
- low-rank attention projections are surprisingly effective (parameter reduction ≠ performance loss).
- joint KV embeddings provide massive inference speedup through reduced KV cache size.
- shared positional encodings across heads don't hurt performance.
- head-wise specialization emerges from low-rank bottlenecks, not high-dimensional projections.

Mixture-of-Experts
- expressivity bottleneck occurs at FFN layers, not attention projections.
- linear MoEs provide minimal benefit over dense layers in attention.
- load balancing prevents expert collapse, but attention MoEs saturate early.
- FFN MoEs show promise but require 10B+ tokens for sample efficiency.
- expert specialization requires significant training data (10B+ tokens).
- load balancing is critical but insufficient for attention-layer MoEs.

Activation Function
- ReLU² activation shows consistent 1-2% improvement over GELU at scale.

Parallelism
- expert parallelism enables larger model capacity without proportional memory increase.

Scaling
- MLA architecture should scale to larger models (evidence from DeepSeek-V3).
- expert parallelism enables model growth without memory explosion.
- flexattention patterns will become critical for long-context applications.
- hybrid dense/sparse architectures are the future of efficient large models.


credits 
- Rishi's PicoGPT research (MLA + MoE experimental insights)
- PyTorch FlexAttention team
- NanoGPT speedrun contributors (base architecture optimizations)
- DeepSeek-V2/V3: Multi-Latent Attention architecture
- Switch Transformer: Sparse expert routing
- MoEUT: Mixture of Experts in Unified Transformers
- Switch-Head: Expert routing in attention layers
- FlexAttention: Efficient attention for long sequences

About

aims to be the fastest learning moe, east or west

Resources

License

Stars

Watchers

Forks