Trust-videoLLM is a robust benchmark designed to evaluate video-based large language models (videoLLMs) across five key dimensions: truthfulness, safety, robustness, fairness, and privacy. It encompasses 30 tasks involving adapted, synthetic, and annotated videos to assess dynamic visual scenarios, cross-modal interactions, and real-world safety considerations. Evaluation of 23 state-of-the-art videoLLMs (5 commercial, 18 open-source) highlights significant limitations in dynamic visual scene understanding and resilience to cross-modal perturbations.
- 2025.11.08 🎉 🎉 🎉 Our paper has been accepted by the AAAI 2026 (Oral) !See you in Singapore ~
- Install the basic enviroment dependencies: cd Trust-videoLLM
pip installl requirements.txt
- Follow the instructions provided by the relevant model to install the dependencies required by videoLLM.
This dataset contains potentially offensive or disturbing content, including but not limited to pornography, violence, and graphic videos. Researchers requiring access to the dataset must contact wangyouze6889@163.com for authorization.
For Inference:
# Description: Run scripts require a model_id to run inference tasks.
# Usage: bash scripts/run/*/*.sh <model_id>
scripts/run
├── fairness_scripts
│ ├── f1-stereotype-impact-generation.sh
│ ├── f2-perference-video-selection.sh
│ ├── f3-profession-prediction.sh
│ ├── f4-agrement-on-stereotype.sh
│ └── f5-time-sensitivity-stereotype.sh
├── privacy_scripts
│ ├── p1-privacy-identification.sh
│ ├── p2-privacy-vqa.sh
│ ├── p3-infoflow-exception.sh
│ ├── p4-celebrities.sh
│ └── p5-privacy-inference.sh
├── robustness_scripts
│ ├── r1-OOD-video-caption.sh
│ ├── r2-noise-VQA.sh
│ ├── r3-temporal-consistency.sh
│ ├── r4-adversarial-attack-classification.sh
│ ├── r5-adversarial-attack-captioning.sh
│ ├── r6-impact-video-sentiment-analysis.sh
│ ├── r7-adversarial-text.sh
│ └── r8-misleading-prompts.sh
├── safety_scripts
│ ├── s1-nsfw-video-generation.sh
│ ├── s2-nsfw-prompt-execution.sh
│ ├── s3-toxic-content-continues.sh
│ ├── s4-identification-video-risky-content.sh
│ ├── s5-temporal-dependency-misleading.sh
│ ├── s6-deepfake-identification.sh
│ ├── s7-figstep-jailbreak.sh
│ ├── s7-mmsafetybench-jailbreak.sh
│ └── s7-videoJail-jailbreak.sh
└── truthfulness_scripts
├── t1-vqa-contextual.sh
├── t2-vqa-temporal.sh
├── t3-video-caption.sh
├── t4-events-understanding.sh
└── t5-video-hallucination.sh
For Evaluation:
Subsequently, scripts in the scripts/score directory can be utilized to compute statistical results from the outputs.
# Description: Run scripts require a model_id to calculate statistical results.
# Usage: python scripts/score/*/*.py --model_id <model_id>
scripts/score
├── fairness_scripts
│ ├── f1-stereotype-impact-generation.py
│ ├── f2-perference-video-selection.py
│ ├── f3-profession-prediction.py
│ ├── f4-agrement-on-stereotype.py
│ └── f5-time-sensitivity-stereotype.py
├── privacy_scripts
│ ├── p1-privacy-identification.py
│ ├── p2-privacy-vqa.py
│ ├── p3-infoflow-exception.py
│ ├── p4-celebrities.py
│ └── p5-privacy-inference.py
├── robustness_scripts
│ ├── r1-OOD-video-caption.py
│ ├── r2-noise-VQA.py
│ ├── r3-temporal-consistency.py
│ ├── r4-adversarial-attack-classification.py
│ ├── r5-adversarial-attack-captioning.py
│ ├── r6-impact-video-sentiment-analysis.py
│ ├── r7-adversarial-text.py
│ └── r8-misleading-prompts.py
├── safety_scripts
│ ├── s1-nsfw-video-generation.py
│ ├── s2-nsfw-prompt-execution.py
│ ├── s3-toxic-content-continues.py
│ ├── s4-identification-video-risky-content.py
│ ├── s5-temporal-dependency-misleading.py
│ ├── s6-deepfake-identification.py
│ ├── s7-figstep-jailbreak.py
│ ├── s7-mmsafetybench-jailbreak.py
│ └── s7-videoJail-jailbreak.py
└── truthfulness_scripts
├── t1-vqa-contextual.py
├── t2-vqa-temporal.py
├── t3-video-caption.py
├── t4-events-understanding.py
└── t5-video-hallucination.py
If you find our work useful in your research, we kindly encourage you to cite our paper.
@article{wang2025understanding,
title={Benchmarking the Trustworthiness in Multimodal LLMs for Video Understanding},
author={Wang, Youze and Chen, Zijun and Chen, Ruoyu and Gu, Shishen and Dong, Yinpeng and Su, Hang and Zhu, Jun and Wang, Meng and Hong, Richang and Hu, Wenbo},
journal={arXiv preprint arXiv:2506.12336},
year={2025}
}