Skip to content

woabu0/reviewnet

Repository files navigation

ReviewNet - Intelligent App Review Analysis

Welcome to the ReviewNet project! This README provides an overview of the project, setup instructions, and other relevant details.

Table of Contents

Visit

About

ReviewNet is a comprehensive data analysis framework designed to extract deep insights from mobile application reviews. By leveraging state-of-the-art Natural Language Processing (NLP) models—including discriminative transformers (BERT, RoBERTa) and novel tabular deep learning approaches (TabPFN)—it provides robust analysis of user sentiment, emotional undertones, and content toxicity.

Features

  • Google Play Scraper
  • Advanced Sentiment Analysis
  • Emotion Detection
  • Toxicity Detection
  • Word Cloud Generation
  • Interactive Visualizations

Installation

  1. Clone the repository:

    git clone https://github.com/woabu0/reviewnet.git
  2. Navigate to the project directory:

    cd reviewnet
  3. Set up the Environment (Python):

    python -m venv .venv
    source .venv/bin/activate  # On Windows use `.venv\Scripts\activate`
    pip install -r requirements.txt

Structure

reviewnet/
├── dataset/                    # Raw and processed review datasets
│   ├── coopers.csv
│   ├── foodi.csv
│   ├── kfc.csv
│   ├── khabarkoi.csv
│   ├── khaodao.csv
│   ├── munchies.csv
│   ├── pizzahut.csv
│   ├── proyojon.csv
│   └── sultansdine.csv
├── emotion/                    # Emotion analysis scripts and results
│   ├── emotion_analysis/       # Analysis results & graphs
│   ├── theme_emotion_analysis/ # Theme-based analysis results & graphs
│   ├── emotion_analysis.py     # Core emotion detection logic
│   └── theme_emotion_analysis.py # Theme-specific emotion analysis
├── negative_dataset/           # Datasets containing negative reviews
│   ├── coopers.csv
│   ├── foodi.csv
│   ├── kfc.csv
│   ├── khabarkoi.csv
│   ├── khaodao.csv
│   ├── munchies.csv
│   ├── pizzahut.csv
│   ├── proyojon.csv
│   └── sultansdine.csv
├── scraper/                    # Google Play Store review scraper
│   ├── main.py                 # Scraper entry point
│   └── filter.py               # Data filtering utilities
├── sentiment/                  # Sentiment analysis models and training
│   ├── outputs/                # Confusion matrices, plots, and results
│   ├── bert_train.py           # BERT/RoBERTa training script
│   ├── ml_train.py             # Classical ML models (SVM, RF)
│   ├── negative_bert_train.py  # Negative sentiment focused BERT
│   ├── negative_ml_train.py    # Negative sentiment focused ML models
│   ├── negative_tabpfn_train.py # Negative sentiment with TabPFN
│   ├── sentiment_analysis.py   # Sentiment inference engine
│   ├── tabpfn_train.py         # TabPFN training script
│   └── theme_sentiment_analysis.py # Theme-based sentiment analysis
├── theme/                      # Theme categorization data
│   └── theme.csv
├── toxicity/                   # Toxicity detection modules
│   ├── outputs/                # Toxicity analysis graphs
│   ├── theme_toxicity_analysis.py # Theme-based toxicity analysis
│   └── toxicity_analysis.py    # Core toxicity detection
├── wordclouds/                 # Word cloud generation scripts
│   ├── outputs/                # Generated word cloud images
│   ├── sentiment_wordclouds.py # Sentiment-based word clouds
│   └── theme_wordclouds.py     # Theme-based word clouds
├── dataset.csv                 # Combined main dataset
├── negative_dataset.csv        # Combined negative review dataset
├── requirements.txt            # Project dependencies
└── README.md                   # Project documentation

Contributors

Contributors

Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the repository.

  2. Create a new branch:

    git checkout -b feature-name
  3. Commit your changes:

    git commit -m "Add feature-name"
  4. Push to the branch:

    git push origin feature-name
  5. Open a pull request.

License

This project is licensed under the MIT License.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages