Skip to content

[ICCV 2025] Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection

Notifications You must be signed in to change notification settings

xiaohainku/RISE

Repository files navigation

Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection

Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection

ICCV 2025

NKU & PolyU

Installation

  1. Create the Virtual Environment
conda create -n RISE python=3.8
conda activate RISE
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
git clone https://github.com/xiaohainku/RISE.git
cd RISE
pip install -r requirement.txt
  1. Install FAISS package for efficient retrieval

Please refer to Installing FAISS for more details.

Install gpu version of faiss:

conda install -c pytorch -c nvidia faiss-gpu=1.7.3

If you have difficulty in installing the gpu version of faiss, try to install the cpu verison:

pip install faiss-cpu==1.7.4

If you have installed the cpu version, remember to change the "--faiss_device" argument in retrieval.py from "cuda" to "cpu".

Prepare datasets

Cluster maps, pseudo masks, and predicted maps are available at Google | Quark | Baidu.

Evaluation

RISE consists of two stages: generating pseudo masks and training SINet-V2 based on pseudo masks.

1. Generating pseudo masks

Step 1: Spectral clustering

python spectral-clustering.py \
--data_path /your/train/dataset/path \
--save_path /your/cluster/map/save/path

Step 2: Generate prototypes

python gen-proto.py \
--data_path /your/train/dataset/path \
--cluster_path /your/cluster/map/save/path \
--save_path /your/prototype/save/path

Step 3: Retrieval (generate pseudo mask)

python retrieval.py \
--data_path /your/train/dataset/path \
--prototype_path /your/prototype/save/path \
-save_path /your/pseudo/mask/save/path

2. Train SINet

Step 1: Training

cd SINet-V2
python MyTrain_Val.py \
--img_root /your/train/image/path/ \
--gt_root /your/pseudo/mask/path \
--val_root /your/validation/dataset/path/ \
--save_path /your/checkpoint/save/path/

Step 2: Evaluation

python MyTesting.py \
--pth_path /your/checkpoint/save/path/ \
--data_path /your/test/dataset/path \
--save_dir /your/predicted/map/save/path

Acknowledgements

RISE builds upon self-supervised vision foundation model DINOv2. Thanks for their elegant work.

Citing

If you find our work interesting, please consider using the following BibTeX entry:

@InProceedings{RISE,
    author    = {Du, Ji and Wang, Xin and Hao, Fangwei and Yu, Mingyang and Chen, Chunyuan and Wu, Jiesheng and Wang, Bin and Xu, Jing and Li, Ping},
    title     = {Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection},
    booktitle = {IEEE International Conference on Computer Vision},
    year      = {2025},
    pages     = {22131-22142}
}

About

[ICCV 2025] Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages