- Hangzhou, China
-
04:35
(UTC +08:00) - evan-yang.top
- @zhihaoy18640576
- https://evan-yang.top
- https://dub.sh/anse
- https://afdian.net/a/evan-yang
Highlights
Lists (15)
Sort Name ascending (A-Z)
Starred repositories
微舆:人人可用的多Agent舆情分析助手,打破信息茧房,还原舆情原貌,预测未来走向,辅助决策!从0实现,不依赖任何框架。
Visualize npm downloads in a beautiful chart, ready to be shared with your community.
🧑🚀 全世界最好的LLM资料总结(多模态生成、Agent、辅助编程、AI审稿、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
Effortless and beautiful docs template built with Nuxt Content & shadcn-vue.
List of free GPTs that doesn't require plus subscription
Prompt, run, edit, and deploy full-stack web applications. -- bolt.new -- Help Center: https://support.bolt.new/ -- Community Support: https://discord.com/invite/stackblitz
FULL Augment Code, Claude Code, Cluely, CodeBuddy, Comet, Cursor, Devin AI, Junie, Kiro, Leap.new, Lovable, Manus, NotionAI, Orchids.app, Perplexity, Poke, Qoder, Replit, Same.dev, Trae, Traycer AI…
Elegant reading of real-time and hottest news
💪🏻 Blazing-fast system monitoring for your desktop (built with Rust, Tauri & Svelte)
Lobe documentation site theme package designed for Dumi 2
Vite plugin that enables a MCP server helping models to understand your Vue app better.
free online AI resume editor,the only official website is https://magicv.art
Generate QR Code universally, in any runtime, to ANSI, Unicode or SVG.
Minimal Documentation theme and CLI for shared usage across UnJS projects.
Admin Dashboard UI built with Shadcn and Vite.
NeatChat / NeatChat
Forked from ChatGPTNextWeb/NextChat基于 NextChat 深度重构,一个更优雅、更强大的 AI 对话解决方案
Rich-text editor with AI, MCP, and shadcn/ui
❶ One is a new React framework - target web and native with a single Vite plugin and fully shared code, so you can ship cross-platform nearly as easy as single-platform.
🤖 Components Library for Quickly Building LLM Chat Interfaces.
Vue3 + Pinia 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile
本文详细分析了 Github Copilot 这个基于机器学习的代码自动补全工具的实现原理。作者通过逆向工程的方式,深入探索了 Copilot 的核心逻辑,包括代码提示的入口、获取提示的核心方法、以及相关的缓存策略、实验特性等。