This repository contains the source code of the algorithm described in a CVPR 2016 paper Pairwise Matching through Max-Weight Bipartite Belief Propagation. More details are provided on the [project page] (https://zzhang.org/featurematching.html). This packages has been tested using Matlab R2015b on CentOS 7.0 (a distrubition of Linux) x64.
If you find HungarianBP useful in your research, please consider citing:
@inproceedings{Zhang:2016:CVPR,
author = {Zhang, Zhen and Shi, Qinfeng and McAuley, Julian and Wei, Wei and Zhang, Yanning and Hengel, Anton},
booktitle = {CVPR},
title = {Pairwise Matching through {Max-Weight} Bipartite Belief Propagation},
year = {2016},
}
-
Prerequisites
-
[Boost] (http://www.boost.org/): Install the boost library via apt-get, yum, or compiling from scratch.
-
[Matlab] (http://www.mathworks.com/): Install Matlab.
-
Configuring HungarianBP
-
Downloading HungarianBP via
git clone https://github.com/zzhang1987/HungarianBP -
Fetching the mex code via
cd HungarianBP git submodule init git submodule update --remote -
Run compiling.m.
matlab #inside matlab cd HungarianBP compiling -
Run
demoCar.manddemoMotor.mto reproduce the results on the [Cars and Motorbikes Dataset] (https://sites.google.com/site/graphmatchingmethods/). RundemoCharater.mto reproduce the results on the [Chinese Character dataset] (http://www.escience.cn/system/file?fileId=62549).
Precompiled mex files for linux x64 are included. For other platforms, you can use any compilier that supports matlab and c++11 to compile the mex files.
If you have any issues (question, feedback) or find bugs in the code, please contact zhangzhen@mail.nwpu.edu.cn.